Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介:語彙の概念化と Wikipediaを用いた英字略語の意味推定方法
Search
Atsushi
July 26, 2018
0
150
文献紹介:語彙の概念化と Wikipediaを用いた英字略語の意味推定方法
2018年7月26日 文献紹介
長岡技術科学大学
自然言語処理研究室
Atsushi
July 26, 2018
Tweet
Share
More Decks by Atsushi
See All by Atsushi
文献紹介:Automated Evaluation of Out-of-Context Errors
atsumikan
0
98
文献紹介:Correction of OCR Word Segmentation Errors in Articles from the ACL Collection through Neural Machine Translation Methods
atsumikan
0
160
文献紹介:Auxiliary Objectives for Neural Error Detection Models
atsumikan
0
92
文献紹介:Wronging a Right: Generating Better Errors to Improve Grammatical Error Detection
atsumikan
0
120
文献紹介:Low-resource OCR error detection and correction in French Clinical Texts
atsumikan
0
130
文献紹介:CMMC-BDRC Solution to the NLP-TEA-2018 Chinese Grammatical Error Diagnosis Task
atsumikan
0
130
文献紹介 : Fluency Boost Learning and Inference for Neural Grammatical Error Correction
atsumikan
0
180
文献紹介:The Effect of Error Rate in Artificially Generated Data for Automatic Preposition and Determiner Correction
atsumikan
0
130
文献紹介: Automatic Annotation and Evaluation of Error Types for Grammatical Error Correction
atsumikan
0
170
Featured
See All Featured
Done Done
chrislema
186
16k
Thoughts on Productivity
jonyablonski
73
5k
A designer walks into a library…
pauljervisheath
210
24k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
The Cult of Friendly URLs
andyhume
79
6.7k
Speed Design
sergeychernyshev
33
1.4k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
The World Runs on Bad Software
bkeepers
PRO
72
12k
BBQ
matthewcrist
89
9.9k
Transcript
ޠኮͷ֓೦Խͱ8JLJQFEJBΛ༻͍ͨ ӳࣈུޠͷҙຯਪఆํ๏ Ԭٕज़Պֶେֶࣗવݴޠॲཧݚڀࣨ ੁ३ࢤ จݙհ ݄ ࣗવݴޠॲཧ7PM/P ࣗવݴޠॲཧ 7PM/PQQ ޙ౻ਓ
࢘ ෦Ұ
֓ཁ w ӳࣈུޠͷଟٛੑΛղফͨ͠ҙຯਪఆ w ใͷܽΛ8JLJQFEJBͷใΛ༻͍ͯิ w ݅ͷ৽ฉهࣄʹର͠ ࠷ߴͰ͍ۙਖ਼Λࣔ͢
ఏҊख๏
֓೦ϕʔε w ෳͷిࢠԽࠃޠࣙॻͳͲͷݟग़͠ޠΛ֓೦ͱ͠ɺͦͷޠٛจʹ༻ ͞Ε͍ͯΔཱࣗޠΛ֓೦ͷҙຯಛΛද͢ଐੑͱఆٛͯ͠ߏங͞Εͨ େنͳσʔλϕʔε w ଐੑͰ͋Δ୯ޠ֓೦ͱͯ͠ඞͣఆٛ͞Ε͍ͯΔͱ͍͏ ಛΛ࣋ͭ
ະఆٛޠͷ֓೦Խ w 8FC্ͷݴޠใΛར༻͠ɼࣗಈతʹ֓೦Խ͢Δ ⁋ɼ෦ɼՏԬޙ౻ɼɼ෦ɼՏԬ w ཱࣗޠΛ֓೦ͱͯ͠நग़͢Δ w Ұ࣍ଐੑʹର͢ΔॏΈɺUGɾJEGͷԠ༻Ͱࢉग़͢Δ
8JLJQFEJBʹΑΔҙຯީิͷݕࡧ w ҙຯͷ֓೦Խॲཧʹ͓͚ΔϊΠζΛআڈ w ӳࣈུޠͰͳ͍ΞϧϑΝϕοτͷཏྻΛআ
࣮ݧ݅ w ೖྗจষ w શࠃࢴϲ݄ͷهࣄ͔Βҙຯͷ͋ΔӳࣈུޠΛؚΉهࣄΛແ࡞ҝʹ هࣄநग़ͨ͠ͷ w ਪఆͨ͠ҙຯ͕ਖ਼͍͔͠ͷஅਓखͰߦ͏ w ؔ࿈ੑධՁख๏
w ؔ࿈ܭࢉ w &BSUI.PWFS`T%JTUBODF &.% w ϕΫτϧۭؒϞσϧ 4BMUPOFUBM 74.
࣮ݧ݁Ռ
࣮ݧ݁Ռ
࣮ݧ݁Ռ
·ͱΊٴͼࠓޙͷల w ޠኮͷ֓೦Խํ๏ͱؔ࿈ੑධՁํ๏ٴͼ8JLJQFEJBΛࣙ ॻͱͯ͠༻͍Δ͜ͱͰӳࣈུޠͷଟٛੑΛղফ͠ɺຊདྷͷ ҙຯͷਪఆΛ࣮ݱͨ͠ w ࠓޙͷ՝ͱͯ͠ɺχϡʔϥϧωοτϫʔΫΛԠ༻ͨ͠ ϕΫτϧϞσϧΛద༻͢Δํ๏ͷݕ౼͕ߟ͑ΒΕΔ