Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介:CMMC-BDRC Solution to the NLP-TEA-2018 Chi...
Search
Atsushi
September 28, 2018
0
130
文献紹介:CMMC-BDRC Solution to the NLP-TEA-2018 Chinese Grammatical Error Diagnosis Task
2018年9月28日 文献紹介
長岡技術科学大学
自然言語処理研究室
Atsushi
September 28, 2018
Tweet
Share
More Decks by Atsushi
See All by Atsushi
文献紹介:Automated Evaluation of Out-of-Context Errors
atsumikan
0
96
文献紹介:Correction of OCR Word Segmentation Errors in Articles from the ACL Collection through Neural Machine Translation Methods
atsumikan
0
150
文献紹介:Auxiliary Objectives for Neural Error Detection Models
atsumikan
0
89
文献紹介:Wronging a Right: Generating Better Errors to Improve Grammatical Error Detection
atsumikan
0
120
文献紹介:Low-resource OCR error detection and correction in French Clinical Texts
atsumikan
0
120
文献紹介 : Fluency Boost Learning and Inference for Neural Grammatical Error Correction
atsumikan
0
170
文献紹介:語彙の概念化と Wikipediaを用いた英字略語の意味推定方法
atsumikan
0
150
文献紹介:The Effect of Error Rate in Artificially Generated Data for Automatic Preposition and Determiner Correction
atsumikan
0
130
文献紹介: Automatic Annotation and Evaluation of Error Types for Grammatical Error Correction
atsumikan
0
170
Featured
See All Featured
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.8k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.7k
Being A Developer After 40
akosma
90
590k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.1k
Into the Great Unknown - MozCon
thekraken
40
2k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Fireside Chat
paigeccino
39
3.6k
Practical Orchestrator
shlominoach
190
11k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
Transcript
$..$#%3$4PMVUJPOUPUIF/-1 5&"$IJOFTF(SBNNBUJDBM&SSPS %JBHOPTJT5BTL Ԭٕज़Պֶେֶࣗવݴޠॲཧݚڀࣨ ੁ३ࢤ จݙհ ݄ :POHXFJ;IBOH 2JOBO)V 'BOH-JV
BOE:VFHVP(V 1SPDFFEJOHTPGUIFUI8PSLTIPQPO/BUVSBM-BOHVBHF1SPDFTTJOH 5FDIOJRVFTGPS&EVDBUJPOBM"QQMJDBUJPOT QBHFTr.FMCPVSOF "VTUSBMJB +VMZ 1
"CTUSBDU w தࠃޠʹ͓͚Δจ๏ޡΓగਖ਼ͷλεΫʹऔΓΉ w طଘͷ#J-45.Λ༻ͨ͠ϞσϧͰτϨʔχϯά σʔλ͕গͳ͍ͷͰ֦ுΛߦͬͨ w ݕग़λεΫͰ࠷ߴ͍'είΞΛ֫ಘ w ฏۉͰ൪ʹߴ͍'είΞΛ֫ಘ
!2
*OUSPEVDUJPO w தࠃͷൃలʹ͍தࠃޠͷֶशऀ͕૿Ճ w ӳޠΑΓதࠃޠͷจ๏͕ෳࡶ w தࠃޠΛޠͱ͠ͳֶ͍शऀͷशಘ͕ࠔ !3
*OUSPEVDUJPO w $(&%ɿதࠃޠͷจ๏ޡΓΛగਖ਼͢ΔλεΫ w ޡΓͷҐஔɺछྨɺగਖ਼ީิΛݟ͚ͭΔ w ޡΓͷछྨ !4 w 4ͱ.࠷େͭ·Ͱͷగਖ਼ީิΛఏҊͰ͖Δ
ͳ୯ޠʢ3ʣ ୯ޠͷܽམʢ.ʣ ୯ޠͷબޡΓʢ4ʣ ୯ޠͷॱ൪ͷޡΓʢ8ʣ
*OUSPEVDUJPO w ݕग़λεΫɿจষޡ͍ͬͯΔͷ͔ʁ w ࣝผλεΫɿͲͷޡΓͷछྨ͕ຒΊࠐ·Ε͍ͯΔ͔ʁ w ҐஔλεΫɿΤϥʔҐஔ͕ൃੜ͍ͯ͠ΔൣғͲ͔͜ʁ w గਖ਼λεΫɿగਖ਼ޙͷ୯ޠԿͰ͋Δ͔ʁ !5
ݕग़Ϟσϧ w )*5UFBN ;IFOHFUBM ٴͼ"MJCBCBUFBN :BOHFUBM ͷख๏Λ࠾༻ !6
గਖ਼Ϟσϧ w ςΩετྨͷλεΫͱΈͳ͠గਖ਼ w ΧςΰϦɿਖ਼͍͠୯ޠ w จॻɿޡͬͨ୯ޠͱͦͷલޙͷ୯ޠ !7
τϨʔχϯάσʔλͷ֦ுͷखॱ ޡΓͷϧʔϧΛநग़͢Δ w (&$%τϨʔχϯάηοτ͔Βநग़ w ωΠςΟϒεϐʔΧʔ͕ޡΓ͍͢୯ޠ͔Βநग़ σʔλੜ w ϧʔϧʹै͍ਖ਼͍͠จΛޡͬͨจʹม !8
τϨʔχϯάσʔλͷ֦ுͷखॱ ޡΓͷϧʔϧΛநग़͢Δ w (&$%τϨʔχϯάηοτ͔Βநग़ w ωΠςΟϒεϐʔΧʔ͕ޡΓ͍͢୯ޠ͔Βநग़ σʔλੜ w ϧʔϧʹै͍ਖ਼͍͠จΛޡͬͨจʹม !9
ϧʔϧͷநग़ w $(&%τϨʔχϯάηοτ͔ΒޡΓͷϧʔϧΛநग़ w ϧʔϧΛநग़͢ΔͨΊͷखॱ ޡͬͨจͱਖ਼͍͠จͷ͕ҧ͏จষΛআڈ ޡͬͨจͱਖ਼͍͠จΛׂ ޡͬͨ୯ޠͱͦͷલޙͷ୯ޠ͔ΒϧʔϧΛ࡞ !10
ϧʔϧͷநग़ w ಘΒΕΔϧʔϧ w bछྨޡͬͨจࣈલͷ୯ޠਖ਼͍͠จࣈޙͷ୯ޠ` w b4ڭ䟙ሇࢠڢ䟙ਓ` w b4ڭ䟙ࢠڢ䟙` !11
ϧʔϧͷநग़ w ωΠςΟϒεϐʔΧʔͷޡΓ͔Βͷϧʔϧநग़ w ωΠςΟϒεϐʔΧʔ͕ޡΓ͍͢୯ޠϦετ͕ଘࡏ w ͦͷલޙʹग़ݱ͢Δ୯ޠهࡌ͞Ε͍ͯͳ͍ͷͰ ϧʔϧΛநग़Ͱ͖ͳ͍ w ίʔύε͔ΒޡΓ͍͢୯ޠͷલޙͷ୯ޠΛநग़
!12
ϧʔϧͷநग़ w લॲཧ $(&%σʔληοτΛมͯ͠؆ૉԽ͢Δ ୯ޠͷׂΛߦ͏ จষΛϑΟϧλϦϯά͢Δ wࣈͷׂ߹จࣈ͕গͳ͍ͷ wதࠃޠֶशऀ͕༻͠ͳ͍୯ޠΛؚΉͷ !13
τϨʔχϯάσʔλͷ֦ுͷखॱ ޡΓͷϧʔϧΛநग़͢Δ w (&$%τϨʔχϯάηοτ͔Βநग़ w ωΠςΟϒεϐʔΧʔ͕ޡΓ͍͢୯ޠ͔Βநग़ σʔλੜ w ϧʔϧʹै͍ਖ਼͍͠จΛޡͬͨจʹม !14
࣮ݧ݅ w ϧʔϧ w աڈͷ$(&%τϨʔχϯάσʔλͱςετσʔλɿ ݸ w ڭՊॻͳͲͷίʔύεɿ ݸ
w ੜͨ͠Τϥʔจɿ จ w ׂɿ܇࿅σʔλ w ׂɿݕূͷͨΊͷσʔλ !15
!16
࣮ݧ݁ՌʢධՁσʔληοτʣ !17
$PODMVTJPO w ϞσϧͷτϨʔχϯάηοτΛ֦ு͢ΔͨΊʹ ΑΓଟ͘ͷΤϥʔจΛੜͨ͠ w ฏۉϥϯΩϯάͰ൪ʹߴ͍'είΞΛ֫ಘ w σʔλ֦ுΞϧΰϦζϜͷ༗ޮੑΛূ໌ w ࠓޙͷ࡞ۀ
w Τϥʔݕग़ͱमਖ਼ͰΑΓଟ͘ͷจ๏తͳಛΛ͏ w ୈೋݴޠͱͯ͠தࠃޠΛڭ͑ΔࡍͷܦݧΛ׆͔͢ !18