Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介:Auxiliary Objectives for Neural Error Dete...
Search
Atsushi
December 21, 2018
Technology
0
92
文献紹介:Auxiliary Objectives for Neural Error Detection Models
2018/12/21 文献紹介
長岡技術科学大学
自然言語処理研究室
Atsushi
December 21, 2018
Tweet
Share
More Decks by Atsushi
See All by Atsushi
文献紹介:Automated Evaluation of Out-of-Context Errors
atsumikan
0
98
文献紹介:Correction of OCR Word Segmentation Errors in Articles from the ACL Collection through Neural Machine Translation Methods
atsumikan
0
160
文献紹介:Wronging a Right: Generating Better Errors to Improve Grammatical Error Detection
atsumikan
0
120
文献紹介:Low-resource OCR error detection and correction in French Clinical Texts
atsumikan
0
130
文献紹介:CMMC-BDRC Solution to the NLP-TEA-2018 Chinese Grammatical Error Diagnosis Task
atsumikan
0
130
文献紹介 : Fluency Boost Learning and Inference for Neural Grammatical Error Correction
atsumikan
0
180
文献紹介:語彙の概念化と Wikipediaを用いた英字略語の意味推定方法
atsumikan
0
150
文献紹介:The Effect of Error Rate in Artificially Generated Data for Automatic Preposition and Determiner Correction
atsumikan
0
130
文献紹介: Automatic Annotation and Evaluation of Error Types for Grammatical Error Correction
atsumikan
0
170
Other Decks in Technology
See All in Technology
Strands Agents × インタリーブ思考 で変わるAIエージェント設計 / Strands Agents x Interleaved Thinking AI Agents
takanorig
1
110
シニアソフトウェアエンジニアになるためには
kworkdev
PRO
3
180
プロンプトやエージェントを自動的に作る方法
shibuiwilliam
13
11k
「図面」から「法則」へ 〜メタ視点で読み解く現代のソフトウェアアーキテクチャ〜
scova0731
0
330
新 Security HubがついにGA!仕組みや料金を深堀り #AWSreInvent #regrowth / AWS Security Hub Advanced GA
masahirokawahara
1
2.2k
AWS re:Invent 2025~初参加の成果と学び~
kubomasataka
0
110
SQLだけでマイグレーションしたい!
makki_d
0
490
Lambdaの常識はどう変わる?!re:Invent 2025 before after
iwatatomoya
1
630
AIエージェント開発と活用を加速するワークフロー自動生成への挑戦
shibuiwilliam
4
240
【U/day Tokyo 2025】Cygames流 最新スマートフォンゲームの技術設計 〜『Shadowverse: Worlds Beyond』におけるアーキテクチャ再設計の挑戦~
cygames
PRO
2
650
Snowflakeでデータ基盤を もう一度作り直すなら / rebuilding-data-platform-with-snowflake
pei0804
6
1.6k
AI時代の新規LLMプロダクト開発: Findy Insightsを3ヶ月で立ち上げた舞台裏と振り返り
dakuon
0
200
Featured
See All Featured
Raft: Consensus for Rubyists
vanstee
141
7.2k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.3k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.7k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
The Pragmatic Product Professional
lauravandoore
37
7.1k
Done Done
chrislema
186
16k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Facilitating Awesome Meetings
lara
57
6.7k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Transcript
Ԭٕज़Պֶେֶࣗવݴޠॲཧݚڀࣨ ੁ३ࢤ จݙհ ݄ .BSFL3FJ )FMFO:BOOBLPVEBLJT 1SPDFFEJOHTPGUIFUI8PSLTIPQPO*OOPWBUJWF6TFPG/-1GPS #VJMEJOH&EVDBUJPOBM"QQMJDBUJPOT QBHFTr$PQFOIBHFO
%FONBSL 4FQUFNCFS "VYJMJBSZ0CKFDUJWFT GPS/FVSBM&SSPS%FUFDUJPO.PEFMT
"CTUSBDU w ݴޠֶशऀͷ࡞ͨ͠จͷޡΓݕग़ w χϡʔϥϧΛ༻͍ͨܥྻϥϕϦϯάख๏ʹ͓͍ͯɺ ิॿతͷ܇࿅ͷ༗༻ੑΛݕূ w ҎલͷޡΓݕγεςϜͱಉ͡ͷύϥϝʔλͰ ΑΓྑ͍ύϑΥʔϚϯεΛୡ !2
*OUSPEVDUJPO w ݴޠֶशऀͷ࡞ͨ͠จͰ༷ʑͳλΠϓͷޡΓΛ ࣝผ͢Δඞཁ͕͋Δ ɾػೳޠͷޡͬͨ༻ ɾ༰ޠͷҙຯతͳޡΓʢલஔࢺɾܗ༰ࢺͷΈ߹ΘͤͳͲʣ w ݴޠͷΑΓྑ͍දݱΛֶͼɺจ຺ʹ͓͚ΔޡΓΛ ΑΓਖ਼֬ʹݕग़Ͱ͖ΔγεςϜΛߏங͢Δ w
ਖ਼൱ͷ༧ଌ͚ͩͰͳ͘طଘͷσʔλ͔Βநग़Ͱ͖Δ ใΛ༧ଌ͢Δ͜ͱΛࢼΈΔ !3
"VYJMJBSZ-PTT'VODUJPOT !4 xt h( f ) t h(b) t dt
yt DPSSFDUJODPSSFDU 8PSE yt,k : MBCFMLΛ࣋ͭτʔΫϯUͷ༧ଌ֬ ˜ yt,k : ̍τʔΫϯUͷਖ਼͍͠ϥϕϧ͕Lͷ࣌ ̌ͦΕҎ֎ͷ߹
"VYJMJBSZ-PTT'VODUJPOT !5 xt y(1) t y(2) t d(1) t d(2)
t h( f ) t h(b) t DPSSFDUJODPSSFDU 8PSE ผͷλεΫ yt,k : MBCFMLΛ࣋ͭτʔΫϯUͷ༧ଌ֬ ˜ yt,k : ̍τʔΫϯUͷਖ਼͍͠ϥϕϧ͕Lͷ࣌ ̌ͦΕҎ֎ͷ߹
"VYJMJBSZ-PTT'VODUJPOT w GSFRVFODZ ୯ޠͷසΛ༧ଌ͢Δ w FSSPSUZQF ୯ޠͷޡΓͷछྨΛ༧ଌ͢Δ w pSTUMBOHVBHF ֶशऀͷୈҰݴޠΛ༧ଌ͢Δ
w QBSUPGTQFFDI ୯ޠͷࢺΛ༧ଌ͢Δ w HSBNNBUJDBMSFMBUJPOT ୯ޠؒͷґଘؔΛ༧ଌ͢Δ ɹ !6 ผͷλεΫ
"VYJMJBSZ-PTT'VODUJPOT !7
&WBMVBUJPOTFUVQBOEEBUBTFUT w #BTFMJOFɿ3FJBOE:BOOBLPVEBLJT ɾ#J-45.Λ༻͍ͯ4P5"Λୡͨ͠Ϟσϧ w %BUBTFUT ɾ'JSTU$FSUJpDBUFJO&OHMJTI '$&
EBUBTFU ɾ$P/--TIBSFEUBTLUFTUTFU !8
&WBMVBUJPOTFUVQBOEEBUBTFUT w ύϥϝʔλ ɾXPSEFNCFEEJOHTTJ[F ɾJOJUJBMJ[FE QVCMJDMZBWBJMBCMFXPSEWFD .JLPMPWFUBM ɹFNCFEEJOHTUSBJOFEPO(PPHMF/FXT
ɾ-45.IJEEFOMBZFST ɾUBTLTQFDJpDIJEEFOMBZFST ɾPQUJNJ[FE"EBEFMUB ;FJMFS !9
!10
"MUFSOBUJWF5SBJOJOH4USBUFHJFT w ϚϧνλεΫֶशʹؔ͢Δݚڀ ෳͷσʔληοτͰಉ͡γεςϜΛ࠷దԽ͢Δ͜ͱʹ ॏΛஔ͍͍ͯΔ w ༗༻ੑΛࣔͨ͢Ίɺ࣍ͷσʔληοτΛ༻͍ͯ܇࿅ ɾ$P/--EBUBTFUʢDIVOLJOHʣ ɹɹ 5KPOH,JN4BOHBOE#VDIIPM[
ɾ$P/--DPSQVTʢ/&3ʣ ɹɹ 5KPOH,JN4BOHBOE%F.FVMEFS ɾ1FOO5SFFCBOL 15# 104DPSQVT ɹɹ .BSDVTFUBM !11
"MUFSOBUJWF5SBJOJOH4USBUFHJFT w ࣍ͷͭͷํ๏Ͱ܇࿅͢Δ ผͷλεΫͷσʔληοτͰ܇࿅ͨ͋͠ͱɺ ޡΓݕग़σʔληοτͰ܇࿅ ผͷλεΫͷσʔληοτͱޡΓݕग़ͷ σʔληοτΛަޓʹ܇࿅ !12
"MUFSOBUJWF5SBJOJOH4USBUFHJFT !13
"MUFSOBUJWF5SBJOJOH4USBUFHJFT !14
"EEJUJPOBM5SBJOJOH%BUB w NVMUJUBTLMFBSOJOH ར༻ՄೳͳλεΫݻ༗ͷ܇࿅σʔλ͕গͳ͍࣌ʹޮՌ͕ ظ͞ΕΔ w େنͳσʔληοτΛ༻͍ͨ߹ͷޮՌΛݕূ !15
"EEJUJPOBM5SBJOJOH%BUB w ࣍ͷσʔληοτΛ༻ʢ߹ܭ.UPLFOTʣ ɾ$BNCSJEHF-FBSOFS$PSQVT $-$ /JDIPMMT ɾ/64$PSQVTPG-FBSOFS&OHMJTI /6$-& %BIMNFJFSFUBM
ɾ-BOHDPSQVT .J[VNPUPFUBM w܇࿅࣌ʹֶश͢ΔλεΫ ɾ&SSPS%FUFDU ɾ104UBHHJOH !16
"EEJUJPOBM5SBJOJOH%BUB !17
$PODMVTJPO w ݴޠֶशऀͷ࡞ͨ͠จͷޡΓݕΛվળ͢ΔͨΊʹ χϡʔϥϧܥྻϥϕϦϯάʹิॿతͳଛࣦؔΛ౷߹ w 104λάɺจ๏తؔɺޡΓͷछྨ͕ޡΓݕग़ʹ༗༻Ͱ Έ߹ΘͤΔ͜ͱͰ݁Ռ͕վળ w ར༻Մೳͳ܇࿅σʔλ͕ݶΒΕ͍ͯΔ͚࣌ͩͰͳ͘ ଟ͘ͷ܇࿅σʔλΛ༻ͨ͠߹Ͱ༗ޮ
!18