Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CVPR2019 参加速報 本会議1日目 / CVPR2019 Personal Memo: ...
Search
Atsushi
June 18, 2019
Technology
0
360
CVPR2019 参加速報 本会議1日目 / CVPR2019 Personal Memo: Day 1
チラシの裏チラシの裏チラシの裏チラシの裏チラシの裏チラシの裏
Atsushi
June 18, 2019
Tweet
Share
More Decks by Atsushi
See All by Atsushi
CVPR2019参加速報 本会議 3日目 / CVPR2019 Personal Memo: Day 3
atsushihashimoto
0
270
CVPR2019参加速報 本会議 2日目 / CVPR2019 Personal Memo: Day 2
atsushihashimoto
0
230
Other Decks in Technology
See All in Technology
インフラエンジニア必見!Kubernetesを用いたクラウドネイティブ設計ポイント大全
daitak
1
380
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
15
93k
ランサムウェア対策としてのpnpm導入のススメ
ishikawa_satoru
0
220
22nd ACRi Webinar - NTT Kawahara-san's slide
nao_sumikawa
0
100
SREじゃなかった僕らがenablingを通じて「SRE実践者」になるまでのリアル / SRE Kaigi 2026
aeonpeople
6
2.5k
AWS Network Firewall Proxyを触ってみた
nagisa53
1
240
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
1
170
Exadata Fleet Update
oracle4engineer
PRO
0
1.1k
Red Hat OpenStack Services on OpenShift
tamemiya
0
130
Context Engineeringの取り組み
nutslove
0
380
配列に見る bash と zsh の違い
kazzpapa3
3
170
今こそ学びたいKubernetesネットワーク ~CNIが繋ぐNWとプラットフォームの「フラッと」な対話
logica0419
4
330
Featured
See All Featured
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
Mobile First: as difficult as doing things right
swwweet
225
10k
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
Mind Mapping
helmedeiros
PRO
0
90
Getting science done with accelerated Python computing platforms
jacobtomlinson
2
120
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
10
1.1k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Navigating Weather and Climate Data
rabernat
0
110
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Raft: Consensus for Rubyists
vanstee
141
7.3k
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.6k
Transcript
CVPR2019 ຊձٞॳ ใ
- ࡢ·Ͱͱಉ༷ɺݸਓͷϝϞΛެ։͍ͯ͠ΔΑ͏ͳܗͷͷͰ͢ɻ͋͘·Ͱ ɺͪΒ͠ͷཪతͳѻ͍Ͱ͓ئ͍͠·͢ - ࢲͷཧղͷँΓଟʑ͋Δͱࢥ͍·͢ͷͰ͝༰͍ࣻͩ͘͞ɻ ࠓճ͔Βޱ಄ൃදγϣʔτΦʔϥϧͷΈʹͳΓ·ͨ͠ɻ5ൃදx3݅ຖʹ3ͷ࣭͕ٙ͋Δܗ(ܭ18) ͰਐΜͰ͍͘ܗͰ͢ɻΈΜͳख๏ͷৄࡉ·ͰͤͣɺͪΐͬͱUXͷ͍ܗࣜͩͬͨ=ࣸਅͱͬͨΓϝϞ ͢ΔՋ͕ͳ͔ͬͨͷͰɺࠓճ͕ࣗฉ͍ͨൃදΛϙελʔͷΈʹߜͬͯྻڍɻ
ಉҰମผ࢟ͷ2ͭͷಛ͕Ұக͢Δ Α͏Siamese LossΛ͔͚ͭͭɺޓ͍Λઢ ܗม͢Δͱผ࢟ͷsegmentΛநग़Ͱ ͖ΔΑ͏ʹֶशˠະମͰCoSeg͕Ͱ ͖ΔΑ͏ʹͳΔɻ
؆୯ͳαϯϓϧ͔ΒঃʑʹDA͢Δ ͱͪΐͬͱਫ਼͕͋Δɻ SOTAʹશવಧ͍͍ͯͳ͍Α͏ʹ Έ͑Δɻ
γʔϯ͔ΒActorݕग़ͯ͠ɺ Actor͝ͱʹ࣍ʹͲ͏ͳΔ͔Λ ༧ଌˠMessage PassingΛ܁Γฦ͢ ͜ΕʹΑΓಈ࡞༧ଌਫ਼Λ্ɻ
͋ͱͰಡΉɻ ಛྔΛ͢Δɻ ஶऀෆࡏɻ
Multi-label classificationͰɺ֤ଐੑͷ αϯϓϧͷInbalanceΛௐ͢ΔLossΛఏҊ
Region Proposal Network͕Γग़͠ ֤ۣͨܗʹରͯ͠Adv. trainingͰ Domain AdaptationΛ͔͚͍ͯΔͬΆ ͍
λΠτϧΛΈͯԿ͔ͱࢥͬ ͕ͨɺࠨଆͷྻͷઃఆ ΛݟΔʹ Open-setͷख๏ͬΆ ͍ɻ
ΊͬͪΌݟΒΕͯͨ
୯Ұը૾ͷΈ͔Βɺ UnsupervisedͰ ಈ͍͍ͯΔମΛݕग़͢Δख๏ɻ Ͳ͏ɺγʔϯͷ͏ͪɺ͔̍ͭ͠ ग़ྗ͠ͳͦ͞͏ͩͬͨͷͰ ৄࡉεΩοϓ
γΣΠϓಛͱ࢟ಛΛ ൈ͖ग़ͯ͠ɺܗͷ ʮΛணͨਓʯϞσϧΛ ೖྗ͢Δͱɺணͤସ͕͑Ͱ͖ Δʁ
2Dͷ࢟ਪఆx2ຕʹରͯ͠ɺ epipolarͰ3࣍ݩΛ෮ݩ͠ɺ1ຕ͔Β 3Dͷ࢟Λग़ྗͰ͖ΔNNΛผ్ ֶश=self supervised.
LSTMʹ͔͚ΔͷͰͳ͘ɺ ஷΊ·͍ͬͯ͑͘ͱؔʹ͔͚ Δʢؔͷৄࡉෆ໌ʣ Epic-Kitchenͷ݁ՌΛݟΔͱ ͘͢͝ޮ͘ɺͱ͍͏ҹ ͋·Γͳ͍͔ɻ ͬͱଞʹํ๏͕͋Γͦ͏ ڞஶऀ߽՚ɻ
ະདྷ༧ଌͷͰ͖ͳ͍ͱ͜Ζ= EventͷΕͱ͢Δɻ લ͔Βࢲ͕͍͍ͬͯΔख๏ɻ ·͊ɺ͋ΔఔͰ͖ΔΑ͏ʹ ࢥ͑Δ͕ͦͷઌ͕ͩͱࢥ ͏ɻ
How to Do 100MΈ͍ͨͳ ͷɻ.͚ͩͲ
LSTMͰ1ϑϨʔϜग़ྗɺ ͦͷϑϨʔϜΛઌ಄ͱͯ͠ɺ ٯ͖ͷLSTMΛֶश͠ɺ ઌ಄ϑϨʔϜΛੜ͢Δ Cycle GANɻͳ͔ͥMSE͕ ͕͍͋ͬͯΔɻ ࣭͕ͨ͠ɺߟ͍͑ͯͳ͔ͬ ͨΒ͘͠ɺ͔֬ʹͳΜͰͩΖ ͏ͱஶऀ͕ΜͰ͍ͨ...
Self-supervised Learning͕ AlexNetҙ֎ͰͪΌΜͱಈ ͘ͷ͔Λௐͨจɻ Take Home Message͕وॏ
Text > Image > Text ͷCycleͷ ΈGANΛద༻ͯ͠ɺText-to- imageͷม࣌ͷใଛࣦΛݮ Βͨ͠ɻ
Yale SongͷൃදɻDiversity Lossͱ͔ࣅͨΑ ͏ͳͷ͋ΔͣɺΈ͍ͨͳ͜ͱΛ͍͍ͬͯ ͨɻ
Ranjay Krishnaͷൃදɻͪ͜Β Θ͔Γ͍͢ɻ ࣭จΛੜ͢ΔͷΛֶशɻ 1. ը૾ͱਖ਼ղΛೖྗͱ࣭ͯ͠จ Λੜɻ 2. (ೖྗʹਖ਼ղ͕͋Δͱ࣮༻ੑ͕ͳ ͍ͷͰ)ਖ਼ղˠਖ਼ղΧςΰϦʹೖΕ
ସ͑ͨωοτϫʔΫͰɺಉ͡ಛ ͕ग़ྗ͞ΕΔΑ͏ʹֶशɻ
Knowledge GraphΛೖΕͯ HOIͷݕग़Λݡ͘͢Δख๏
3D point cloud͔Βͷ ͷඪຊநग़Λϝλֶश
͋Μ·Γ৽نੑ͕Α͘Θ ͔Βͳ͍??
JigsawΛͬͯෳυϝ Πϯͷը૾Ͱֶश͢Δ ͱɺDomain Generalization(PACS)Ͱ SOTA͕ͰΔ... ҰԠɺҰ͚ͭͩτϦοΫ ͕͋ͬͯɺग़ྗϕΫτϧ ͷΤϯτϩϐʔΛ͘͢ ΔΑ͏ʹɺͭ·Γɺৗʹ ֬৴Λͬͯ͑ΔΑ͏
ͳLossՃ͍ͯ͠Δͱ ͷ͜ͱɻ
Target Domain͕ɺ࣮ࡍʹ(ະ ͷ)ෳυϝΠϯͷू߹ʹͳ ͍ͬͯΔ߹Λߟ͑ɺTarget sub-domainͷਪఆΛ(Ϋϥελ ϦϯάͰΓͳ͕Β)Α͋͘Δ UDAΛ͢Δख๏ɻ ୯ʹಛྔΛΫϥελϦϯά͢ ΔͱΧςΰϦ͝ͱͷΫϥελ͕ Ͱ͖Δةݥ͕ߴ͍ͷͰɺݩͷը
૾ͱɺಛྔΛ߹Θͤͨͷʹ ͍ͨͯ͠ΫϥελϦϯάΛ͢Δ ͱͷ͜ͱɻ
ֶशσʔλ͕Ұ༷ʹͳΔΑ͏ ͳAdversarial TrainingΛͯ͠ɺҰ ༷ʹΒͳ͍ͷΛɺHard Negativeͱͯ͠ݕग़͍ͯ͠Δɻ
ମࣝผͱಈ࡞ࣝผΛֶशͤ͞Δ͜ͱͰɺ ମۣܗΛݕग़͢ΔωοτϫʔΫΛֶशɻ ͜Εͦ͜ɺFirst Person VisionͰطʹ͋Δɻ
None
AEͷLatent Featureʹରͯ͠ ಛ্ۭؒͷڑʹج͍ͮͯ ҟৗݕ͢Δͱɺ্ख͘Open- Set͕ղ͚Δɺͱ͍͏ɻ ౦େͷݚڀɻ
ैདྷͷSpectral Net͕୯ʹ Siamese NetworkͰϓϨτ Ϩʔχϯά͍ͯͨ͠෦Λ վળɻ
ࣗಈ༁ͷSOTAʹͳͬͨͷͱಉ͡Ͱɺ image - text ͷCycle-GANΛֶशɻ
Star-GANͰม1:1ɻ͜ͷख๏ ಉ͡ରͷෳυϝΠϯͷσʔλΛೖྗͱ ͯ͠ɺλʔήοτυϝΠϯͷσʔλΛੜ Ͱ͖ΔΑ͏ʹCycle Consistency LossΛ গ͠ɻ
Conditional GANͳͲͷ conditionʹϊΠζ͕͋Δͱ͠ ͯɺͲ͏Fix͢Δ͔ɻ ֶश࣌ʹಉׂ͡߹ͷϊΠζΛࡌͤ Δɻ ஶऀʹΑΕɺϓϥϚΠ0.2͘Β ͍ͷޡࠩ͑Δɻಉ༷ʹϥϕ ϧʹϊΠζͷͳ͍σʔλʹରͯ͠ ख๏Λద༻ͯͦ͜͠·ͰѱӨ
ڹͳ͍ͱͷ͜ͱɻ จதʹσʔλ͋Γ??
None