Upgrade to Pro — share decks privately, control downloads, hide ads and more …

CVPR2019参加速報 本会議 3日目 / CVPR2019 Personal Memo: ...

Sponsored · Ship Features Fearlessly Turn features on and off without deploys. Used by thousands of Ruby developers.
Avatar for Atsushi Atsushi
June 21, 2019

CVPR2019参加速報 本会議 3日目 / CVPR2019 Personal Memo: Day 3

チラシの裏チラシの裏チラシの裏チラシの裏チラシの裏チラシの裏

Avatar for Atsushi

Atsushi

June 21, 2019
Tweet

More Decks by Atsushi

Other Decks in Technology

Transcript

  1. Deep LearningΛ࢖͍ͬͯΔ ͷ͕ͩɺLosslessͰը૾Λѹ ॖ͢Δख๏ɻ ֤ղ૾౓ͰEntropyූ߸ԽΛ ࢖ͬͨEncoding ˠղ૾౓ͷ௿͍ը૾ͱͯ͠࢒ ͕ࠩͰΔ(͜͜ͷৄࡉ͕Θ͔ Βͳ͔ͬͨ) ˠ(܁Γฦ͠)

    ˠখ͞ͳը૾͸࢒͕ࠩ0ʹͳ ΔΑ͏ʹEntropyූ߸Խ σίʔυ͸ٯॱͰɻ Poster൪߸1൪ʹ ϙελʔηογϣϯ ։࢝௚ޙʹ͍͘ͱ શ͚ۙͮ͘ͳ͍ͷͰ ஫ҙɻ •
  2. લఏ: ಉ͡खॱͷ࡞ۀΛͨ͠ಈը͕ෳ਺ ͋Δɻ ໨త: ࡞ۀͷதͷಈ࡞ΧςΰϦΛɺͦͷ ಛ௃ྔͱͱ΋ʹࣗಈͰಛఆɻ ํ๏: ࡞ۀͷ։͔࢝Βऴྃ·Ͱͷ࣌ࠁtΛ 0ʙ1Ͱද͢ɻ ֤࣌ࠁͷը૾ྻΛೖྗͱͯ͠ɺtΛਪఆ

    ͢Δself-supervised learningΛߦ͏ɻ (ಈ࡞ͷॱ൪ʹ܏޲͕͋ΔͳΒಛ௃ྔͱt ͕݁ͼͭ͘͸ͣɺͱ͍͏Ծఆ) ͜͏ͯ͠ಘΒΕͨಛ௃ྔΛΫϥελϦϯ ά͢Δͱɺಈ࡞ΫϥεʹͳΓಘΔɻ
  3. Unsupervised Domain AdaptationΛ͢Δͱ͖ʹɺGANΛ࢖ͬͯυϝΠϯΛ૿΍ͯ͠ؤ݈ੑ Λ ͋͛Δख๏ɻී௨ͷreconstruction loss + adv. loss, color

    consistency loss + adv. loss, fullͷ 3छྨͰυϝΠϯΛ3ͭ૿΍͢(Domain Diversification... ͍ͩͿώϡʔϦεςΟοΫ͕ͩ). ͦͷ্ͰɺMulti-source domain adaptationΛߦ͏ɻ෺ମݕग़ͰධՁɻ
  4. ಉ͘͡આ໌Λੜ੒͢Δݚ ڀɻ # ྆ํͱ΋౦େݪాݚ ࣸਅͰ͸ͪΐ͏ͲӅΕͯ͠ ·͍ͬͯΔ͕ɺઆ໌Λ Because ࣝผ݁Ռͷௗͷಛ ௃ͷઆ໌ as

    ը૾1, not as ը ૾2ɺΈ͍ͨͳܗͰ 1. ಉ͡ಛ௃Λ΋ͭଞͷௗ 2. ͦͷಛ௃Λ࣋ͨͳ͍͕ࣅ ͨௗ Λදࣔ͢Δɻ
  5. إͷdepthը૾͸Domain InvariantͰ͋Δɺͱ ͍͏ԾઆͷԼɺdepthΛ༧ଌ͢Δmain branch ͱɺdomainຖͷdomain specific branchΛֶ शɻ֤domain specific branchͷಛ௃͕main

    branchͱ۠ผ͔ͭͳ͘ͳΔΑ͏ʹ͢Δ͜ͱͰ generalizationΛߦ͏ɻ depth͸domainඇґଘɺͱ͍͏ࣄલ஌͕ࣝॏ ཁʹݟ͑Δɻٯʹݴ͑͹ɺdepthηϯαʔͷछ ྨ΍إͷ֯౓ɺڑ཭ͳͲ͕ҧͬͨΒɺ͜ͷख ๏͸͏·͍͔͘ͳ͍͸ͣɻ
  6. Deep NNʹAdaBoostΛద༻ ͢Δͱɺաֶशͯ݁͠Ռ͕ѱ ͘ͳΔɻ͜ͷݪҼΛɺαϯϓ ϧຖͷWeightίϯτϩʔϧ ʹ͋Δʢͭ·Γɺޡࣝผ͢ Δαϯϓϧ͕গͳ͗͢Δͱɺ ޙଓͷClassifier͕ͦΕΒʹ overfit͢Δʣͱߟ͑ɺ category-wiseͳॏΈͷߋ৽

    ʹΑΔAdaBoost-likeͳΞϯ αϯϒϧख๏ΛఏҊɻ AdaBoostʹৄ͔ͬͨ͠Βൃ දऀʹײಈ͞Εͨͷ͕ͩɺ ͜Ε΋(δΣωϨʔγϣϯ)Ϊ ϟοϓ๖͑ͷҰछͩΖ͏͔ʁ