Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Exercises for Patterns in Recordings
Search
Ben Fields
July 05, 2016
Technology
0
44
Exercises for Patterns in Recordings
from DHOxSS 2015-16
Ben Fields
July 05, 2016
Tweet
Share
More Decks by Ben Fields
See All by Ben Fields
People in the loop machine learning: A case Study in news similarity
bfields
0
140
Human-centric evaluation of similarity spaces of news articles
bfields
2
63
Ethics, Data Science, and Public Service Media
bfields
1
57
The Case for Public Service Recommender Algorithms
bfields
0
710
Bikes are Dope
bfields
0
67
Beyond Your Reckons: from feels to facts
bfields
0
80
People who like cheese also like crackers: a learning hour on recommender systems
bfields
0
90
Auto-Summarising Beer Reviews
bfields
0
73
rMIXr: how we learned to stop worrying and love the graph
bfields
0
100
Other Decks in Technology
See All in Technology
Snowflake Summit 2025 データエンジニアリング関連新機能紹介 / Snowflake Summit 2025 What's New about Data Engineering
tiltmax3
0
310
急成長を支える基盤作り〜地道な改善からコツコツと〜 #cre_meetup
stefafafan
0
120
Postman AI エージェントビルダー最新情報
nagix
0
110
SalesforceArchitectGroupOsaka#20_CNX'25_Report
atomica7sei
0
170
Understanding_Thread_Tuning_for_Inference_Servers_of_Deep_Models.pdf
lycorptech_jp
PRO
0
130
Snowflake Summit 2025全体振り返り / Snowflake Summit 2025 Overall Review
mtpooh
2
400
AWS CDK 実践的アプローチ N選 / aws-cdk-practical-approaches
gotok365
6
770
Observability infrastructure behind the trillion-messages scale Kafka platform
lycorptech_jp
PRO
0
140
第9回情シス転職ミートアップ_テックタッチ株式会社
forester3003
0
240
ひとり情シスなCTOがLLMと始めるオペレーション最適化 / CTO's LLM-Powered Ops
yamitzky
0
440
【TiDB GAME DAY 2025】Shadowverse: Worlds Beyond にみる TiDB 活用術
cygames
0
1.1k
Amazon S3標準/ S3 Tables/S3 Express One Zoneを使ったログ分析
shigeruoda
4
530
Featured
See All Featured
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
A Modern Web Designer's Workflow
chriscoyier
694
190k
Into the Great Unknown - MozCon
thekraken
39
1.9k
It's Worth the Effort
3n
185
28k
Rebuilding a faster, lazier Slack
samanthasiow
82
9.1k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.5k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
800
Documentation Writing (for coders)
carmenintech
72
4.9k
For a Future-Friendly Web
brad_frost
179
9.8k
Site-Speed That Sticks
csswizardry
10
660
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
124
52k
Transcript
Patterns in Recording - Exercises Ben Fields
WEKA basics • Launch the WEKA Application • Select ‘Explorer’
• Load ’50_weka_class_labeled.arff’ • Select various Attributes (features)
WEKA basics • Attribute selection with regular expressions (‘.*’ is
an expanding wild card) • Find all the MFCC attributes • also select ‘CLASS’ • press ‘Invert’, then ‘Remove’
using a classifier • Select ‘Classify’ tab • ‘Choose’ >>
‘classifiers/bayes/ NaiveBayes’ • set test options to ‘Cross-validation’ • press ‘Start’
putting it all together • now repeat the whole process
using LPC features
Explore more files and features • Load ‘training_data_after_parsing.arff’ • Classify
against the CLASS mood labels using Random Forests and J48. Which performs better? Which classes are most confused?