Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Machine Learning for the Sensor Revolution

Machine Learning for the Sensor Revolution

Avatar for Henrik Brink

Henrik Brink

November 05, 2013
Tweet

More Decks by Henrik Brink

Other Decks in Technology

Transcript

  1. Berlin     November  2013   Machine  Learning  for  the

      Sensor  Revolu=on   Henrik  Brink        @brinkar  
  2. The  Internet  of  Things   “machine-­‐generated  data  will  con=nue  to

      grow  as  fast  as  Moore’s  Law  lets  it”   “It  is  unrealis=c  to  hope  ever  to  keep  most  or   all  machine-­‐generated  data”   “most  data  (by  volume)  will  be  machine-­‐ generated”   hUp://www.dbms2.com/2010/01/17/three-­‐broad-­‐categories-­‐of-­‐data/  
  3. Example:  Smart   meters         Predic=ng  

    energy  usage   Self-­‐learning   thermostat  
  4. Example:  Smartphone  sensors   561  columns:  a   few  seconds

     of   accelerometer  and   gyroscope  data   6  labels:  walking,   walking  upstairs,   walking  downstairs,   si^ng,  standing,  laying     98%  accuracy  with   nonlinear  ML.   Standing  and   si^ng  is  most   confused  
  5. •  How  do  we  store  and  manage  the  data?  

      •  How  do  we  find  needle-­‐in-­‐the-­‐haystack   events?   •  How  do  we  make  decisions  in  real-­‐=me?   Challenges  
  6. •  How  do  we  store  and  manage  the  data?  

      •  How  do  we  find  needle-­‐in-­‐the-­‐haystack   events?   •  How  do  we  make  decisions  in  real-­‐=me?   Challenges  
  7. Supervised  Machine  Learning   Training   data   Labels  

    Features   Supervised   ML   algorithm   Predic=ve   model   New   data   Features   Predicted     label  for   new  data   Model   evalua=on  &   op=miza=on  
  8. Nonlinear   models   Smartphone  ac=vity   1%  false-­‐posi=ves  

    99%  detec=on  rate   Source:  Scikit-­‐Learn  classifier  comparison  
  9. Random  Forests®   ü   Classifica=on,  regression      and  clustering

      ü   Nonlinear,  parallelizable,    easily  tuneable   ü   Categorical,  floats,  integers,  boolean      (no  normaliza=on  needed)     ü   Missing  data,  imbalanced  training  data   Random  Forests®  is  a  registered  trademark  of  Salford  Systems  
  10. ML  workflow   Data  inges=on   Model   deployment  

    Model  valida=on   Feature   engineering  
  11. •  How  do  we  store  and  manage  the  data?  

      •  How  do  we  find  needle-­‐in-­‐the-­‐haystack   events?   •  How  do  we  make  decisions  in  real-­‐=me?   Challenges  
  12. Real-­‐=me  machine  learning   Deep  learning  can  learn  to  

    recognize  humans  like   humans.       Also  cats.  
  13. WiseRF™  –  Random  Forests®   Random  Forests®  is  a  registered

     trademark  of  Salford  Systems   Predic=ng   8M  hand-­‐   wriUen   digits   Embedded  devices   and  sensors   Machine  Learning   applica=on  framework   Automated  data  science   Predic=ons  via  API  or   embedded  models   @wiseio              [email protected]  
  14. Join  the  community   Data  Science  and  Machine   Learning

     in  Copenhagen     100+  members  <  1  week   2500+  members     25  meetups  in  <  2  years