Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
クックパッドにおけるCloud AutoML事例
Search
chie8842
November 02, 2018
Technology
9
8.1k
クックパッドにおけるCloud AutoML事例
Cookpad Tech Kitchen #19 R&Dにおけるサービス開発者の仕事(
https://cookpad.connpass.com/event/104459/
)における発表資料です。
chie8842
November 02, 2018
Tweet
Share
More Decks by chie8842
See All by chie8842
MongoDB Atlas:モダンなアプリ開発を支えるデータプラットフォームのご紹介
chie8842
0
34
MongoDB Vectorsearchではじめるカスタマイズ可能な生成AIアプリ開発
chie8842
0
34
MongoDB Atlas Search のご紹介
chie8842
2
2.1k
MongoDB Atlas Vectorsearchではじめる生成AIアプリ開発
chie8842
3
2k
AWS GlueとAWS Lake Formationではじめるデータマネジメント
chie8842
0
1.2k
Distributed Processing in Python
chie8842
2
830
クックパッドにおける推薦(と検索)の取り組み
chie8842
20
8.2k
Understanding distributed processing in Python
chie8842
2
2.2k
Performance Tuning Tips of TensorFlow Inference
chie8842
1
780
Other Decks in Technology
See All in Technology
ランサムウェア対策としてのpnpm導入のススメ
ishikawa_satoru
0
220
ファインディの横断SREがTakumi byGMOと取り組む、セキュリティと開発スピードの両立
rvirus0817
1
1.6k
OpenShiftでllm-dを動かそう!
jpishikawa
0
140
データの整合性を保ちたいだけなんだ
shoheimitani
8
3.2k
今こそ学びたいKubernetesネットワーク ~CNIが繋ぐNWとプラットフォームの「フラッと」な対話
logica0419
5
460
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
210
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
360
20260208_第66回 コンピュータビジョン勉強会
keiichiito1978
0
200
1,000 にも届く AWS Organizations 組織のポリシー運用をちゃんとしたい、という話
kazzpapa3
0
180
(技術的には)社内システムもOKなブラウザエージェントを作ってみた!
har1101
0
240
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
190
猫でもわかるKiro CLI(セキュリティ編)
kentapapa
0
110
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
590
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
1
110
Color Theory Basics | Prateek | Gurzu
gurzu
0
200
My Coaching Mixtape
mlcsv
0
50
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
200
YesSQL, Process and Tooling at Scale
rocio
174
15k
Amusing Abliteration
ianozsvald
0
110
Typedesign – Prime Four
hannesfritz
42
3k
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
88
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Transcript
ΫοΫύουʹ͓͚Δ "VUP.- ݚڀ։ൃ෦ ػցֶशάϧʔϓ ྛాઍӯ !DIJF 2018/11/01 Cookpad Tech Kitchen
#19 R&D
$IJF)BZBTIJEB • ػցֶशνʔϜ ιϑτΣΞΤϯδχΞ • ػցֶशϞσϦϯάΔ͠ج൫Δ͠ΞϓϦॻ͘ • ͕͖ !DIJF 8FC
%# 1SFTTͰ ػցֶशΞϓϦ࡞ͷ ೖهࣄΛॻ͍ͨ 1Z$PO+1 %FW'FTU ͳͲͰొஃ
5-%3 • ,PNFSDPʢΫοΫύου৽نࣄۀʣʹ͓͚Δ (PPHMF $MPVE"VUP.-ࣄྫͷհ • αʔϏε։ൃͷಓ۩ͱͯ͠ػցֶशΛͬͯ ͍͜͏ʂͱ͍͏
,PNFSDPʹ͓͚Δ (PPHMF $MPVE "VUP.-ࣄྫ
• ΫοΫύουͷ&$৽نࣄۀ • ྉཧಓ۩ɺ͏ͭΘɺΧτϥϦʔɺϦωϯࡶ՟ͳͲͷ lྉཧָ͕͘͠ͳΔϞϊz͕ങ͑Δ ϚϧγΣΞϓϦ ͔ͭͬͯΈͯͶʂ
Ϟνϕʔγϣϯ ͱͱग़ऀͷࡋྔͰࣗ༝ʹλά͚ ͕ߦΘΕ͍͕ͯͨɺߪೖऀʹΑΔݕࡧ͠ ͢͞ͷͨΊɺΧςΰϦ͚Λߦ͍͍ͨ
ը૾Λ༻͍ͨΧςΰϦྨ • ը૾Λ༻͍ͯશΧςΰϦʹྨ͍ͨ͠ ۚଐͷث സ ΧτϥϦʔ Τϓϩϯ ϑϥΠύϯ ು แஸ
Ωονϯ πʔϧ ಃث ࣓ث ͷث Ψϥεͷث ࣫ث หശ Ωονϯ ϑΝϒϦοΫ
(PPHMF$MPVE"VUP.-7JTJPO • ػցֶशϞσϧΛτϨʔχϯάͯ͠ɺࣗͷఆٛ ͨ͠ϥϕϧʹैͬͯը૾Λྨ͢Δ͜ͱ͕Ͱ͖Δɺ ($1্ͷαʔϏε
(PPHMF$MPVE"VUP.-7JTJPO • ,PNFSDPج൫ͱͯ͠'JSFCBTFΛ࠾༻͓ͯ͠Γɺಉ͡ ($1্ͷαʔϏεͰ͋Δ$MPVE"VUP.-ͱ૬ੑ͕͍͍ • ػցֶशΤϯδχΞ͕͍ͳ͘ͱӡ༻͕Մೳ • ΨοͱࣗͰ࡞ͬͨ*ODFQUJPO7ϞσϧΑΓੑೳ͕ Αͦ͞͏ͩͬͨ •
ϞσϧͷαʔϏϯάͳͲͷख͕͍ؒΒͣɺΠχγϟϧ ͷར༻͕ߦ͍͍͢ • ίετ໘ͰػցֶशΤϯδχΞͷ(16 ΠϯελϯεΛར༻࣮ͨ͠ݧίετΛߟྀ͢Δͱ ༏ҐͰ͋Δ
ߟྀͨ͠ᶃ • ৽نαʔϏεͳͷͰɺը૾͕গͳ͍ΧςΰϦ ͕͋Δ • Πϯλʔωοτ্ͷը૾ΛՃֶͯ͠श • ΧςΰϦͷ͏ͪɺʮಃثʯͱʮ࣓ثʯͳͲɺࢹ ֮ใ͔Βผ͕͍͠ΧςΰϦ͕͋Δ •
ҰͭͷΧςΰϦͱͯ͠ਪఆ͠ɺग़ऀʹͲͪΒ͔બ ΜͰΒ͏
ߟྀͨ͠ᶄ • ෳͷΧςΰϦͷ͏ͪͲͪΒ͔·͍͠߹͕͋Δ • ͷหശˠΧςΰϦީิɿͷث PSหശ • ΧςΰϦͱ͍ͨͨ͠ΊɺείΞεϨογϣϧυ ˞ ΛԼ͛ͯෳͷΧςΰϦީิ͔Βग़ऀʹબͤΔ
• ࠓޙΧςΰϦใ͕มߋͱͳΔՄೳੑ͕͋Δ • ࠓճֶशͷͨΊͷϥϕϧ͚ࣾͰਓखͰߦ͕ͬͨɺ ࠓޙΧςΰϦͷՃɾมߋͳͲ͕ߟ͑ΒΕΔ • (PPHMF$MPVEͷ)VNBO-BCFMJOHαʔϏεͷར༻ͳͲ͕ ߟ͑ΒΕΔ ˞ "VUP.-ʹ͓͚Δਪఆ࣌ͷࢦඪɻ͜ͷΛߴ͘͢Δͱ৴པͷߴ͍ީิͷΈΛฦ٫͠ɺ ͘͢Δͱ৴པ͕͍ީิฦ٫͢Δ
͜Ε͔ΒͷαʔϏε ։ൃʹ͓͚Δػցֶश
ਓೳͷౙདྷͳ͍ʢͱ͍͏ਓ͍Δʣ https://www.wsj.com/articles/ai-guru-andrew-ng-on-the-job-market-of-tomorrow-1540562400 ػցֶशΛ༻͍ͨαʔϏε։ൃࠓޙٻΊΒΕ͍ͯ͘ (PPHMF#SBJOͷDPGPVOEFSɺ#BJEV 3FTFBSDIͷ"OESFX/Hͷهࣄ
ػցֶशͷར༻ύλʔϯ ֶशࡁΈϞσϧΛར༻͢Δ͚ͩͷύλʔϯ • Google Cloud Vision API • Amazon
Rekognition • Azure Cognitive Services ΧελϜϞσϧΛ࡞Δύλʔϯ • Google Cloud AutoML • "EB/FU r 5FOTPSGMPXϕʔεͷ"VUP.-ϑϨʔϜϫʔΫ • 5105 r TDJLJUMFBSOͷϋΠύύϥϝʔλνϡʔχϯάΛࣗಈԽ͢Δ πʔϧ ࠷৽ٕज़Λར༻ͯ͠ݻ༗ͷϞσϧΛ࡞Δ ύλʔϯ • 5FOTPSGMPXTDJLJUMFBSOΛར༻ͯࣗ͠Ͱ ϞσϧΛ࡞ΓɺσϓϩΠ͢Δ • Ͱղ͚ͳ͍ʹରͯ͜͠ͷํ๏͕ඞཁ easy difficult ͱ ػցֶशΤϯδχΞ͕͍ͳ͘ͱѻ͑Δ
easy difficulty ػցֶशͷར༻ύλʔϯ • ֶशࡁΈϞσϧΛར༻͢Δ͚ͩͷύλʔϯ • Google Cloud Vision API
• Amazon Rekognition • Azure Cognitive Services • ΧελϜϞσϧΛ࡞Δύλʔϯʢ"VUP.-ʣ • Google Cloud AutoML • "EB/FU r 5FOTPSGMPXϕʔεͷ"VUP.-ϑϨʔϜϫʔΫ • 5105 r TDJLJUMFBSOϕʔεͷػցֶशύΠϓϥΠϯͷ࠷దԽπʔϧ • ࠷৽ٕज़Λར༻ͯ͠ݻ༗ͷϞσϧΛ࡞Δύλʔϯ • Tensorflowscikit-learn • ػցֶशͷઐ͕ࣝඞཁͳΞϧΰϦζϜ࣮ɺϋΠύʔύϥϝʔλ νϡʔχϯάͳͲΛࣗಈͰߦͬͯ͘ΕΔ • ͜ΕΒΛ͏·͘͏͜ͱͰɺػցֶश͕Ͱ͖ͳͯ͘ɺαʔϏε։ൃͷ ෯͕͕Δ • Ϧαʔνʹ͓͍ͯ͞Ε͍ͯΔͷҰͭ
·ͱΊ • ػցֶशɺࠓޙػցֶशཧʹৄ͍͠ઐՈ Ͱͳͯ͘ѻ͏͜ͱ͕Ͱ͖ΔΑ͏ʹͳ͍ͬͯ͘ • (PPHMF$MPVE"VUP.-ศརʂ • ͱ͍͑ղ͚Δͱղ͚ͳ͍͕͋Δ • αʔϏε։ൃͷಓ۩ͱͯ͠ػցֶशΛ͏·͘
͍ͬͯ͜͏ʂ