Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Distributed Processing in Python

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.

Distributed Processing in Python

Avatar for chie8842

chie8842

July 14, 2019
Tweet

More Decks by chie8842

Other Decks in Technology

Transcript

  1. $IJF)BZBTIJEB !DIJF) • 4PGUXBSF&OHJOFFSBU$PPLQBE GSPN+BQBO! • EFWFMPQBOEDPOUSJCVUFUPTPNF044 XSJUFBSUJDMFT BOENBLF QSFTFOUBUJPOT

    • 8POGJSTUQSJ[FBUSF*OWFOU (BNF%BZ • XPOUI QSJ[F 5PQ BU1FUGJOEFS ,BHHMFDPNQFUJUJPOJOXFFLDIBMMFOHF $IJF)BZBTIJEB !DIJF • 4PGUXBSF&OHJOFFSBU$PPLQBE GSPN+BQBO! • EFWFMPQBOEDPOUSJCVUFUPTPNF044 XSJUFBSUJDMFT BOENBLF QSFTFOUBUJPOT • 8POGJSTUQSJ[FBUSF*OWFOU (BNF%BZ" • XPOUI QSJ[F 5PQ BU1FUGJOEFS ,BHHMFDPNQFUJUJPOJOXFFLDIBMMFOHF
  2. %JTDMBJNFS • 8IBUEP*UBML • CBTJDBSDIJUFDUVSFPGQBSBMMFMEJTUSJCVUFE QSPDFTTJOH DPNQVUJOH MJCSBSJFTJO1ZUIPO • 8IBUEP*OPU

    UBML • IPXUPJOTUBMMBOETFUVQFBDIMJCSBSJFT • VTBHFTPGEFUBJMFE"1*TPGXIBUXFJOUSPEVDF
  3. l1BSBMMFMQSPDFTTJOHzBOEl%JTUSJCVUFEQSPDFTTJOHz • 1BSBMMFMQSPDFTTJOH 1SPDFTTPS T .FNPSZ 1SPDFTTPS T .FNPSZ 1SPDFTTPS

    T .FNPSZ 1SPDFTTPS 1SPDFTTPS 1SPDFTTPS .FNPSZ • %JTUSJCVUFEQSPDFTTJOH /8 /8 /8 QSPDFTTPSTIBSFTNFNPSZ*OQBSBMMFMQSPDFTTJOH POUIFPUIFSIBOEQSPDFTTPSTIBTPXONFNPSJFTJOEJTUSJCVUFEQSPDFTTJOH
  4. *OXIBUTJUVBUJPOTJTUISFBEJOH FGGFDUJWF • 5BTLTXIJDIJT*0 CPVOETVDIBT • SFBEXSJUFGJMFT • %#DPOOFDUJPO •

    %PXOMPBEEBUBGSPN/8 1SPDFTT 5ISFBE  5ISFBE  5ISFBE  SVO BXBJU BXBJU SVO BXBJU SVO SVO SVO BXBJU BXBJU SVO "DRVJSF-PDL
  5. *OXIBUTJUVBUJPOTJTUISFBEJOH FGGFDUJWF • 5BTLTXIJDIJT*0 CPVOETVDIBT • SFBEXSJUFGJMFT • %#DPOOFDUJPO •

    %PXOMPBEEBUBGSPN/8 1SPDFTT 5ISFBE  5ISFBE  5ISFBE  SVO BXBJU BXBJU SVO BXBJU SVO SVO SVO *0 BXBJU SVO "DRVJSF -PDL *0 *0 *0 VTF$16 EPOPUVTF$16
  6. $FMFSZ"SDIJUFDUVSF $MJFOU CSPLFS 3BCCJU.2 3FEJT  424 FUD 2VFVF 2VFVF

    2VFVF 8PSLFS $POTVNFS 8PSLFS $POTVNFS #BDLFOE 3FTVMUT 3FEJT FUD 8PSLFS $POTVNFS 8PSLFS $POTVNFS
  7. %BTL • EJTUSJCVUFEQSPDFTTJOHGSBNFXPSLCVJMUJO1ZUIPO • CFBCMFUPVTF/VN1Z1BOEBT-JTUTMJLFQBSBMMFM PCKFDUT EBTLBSSBZ EBTLEBUBGSBNF EBTLCBH BOE"1*T

    • 4DIFEVMFSJTDVTUPNJ[BCMFUPHFUHPPEQFSGPSNBODFGPS CPUIGPSQBSBMMFMQSPDFTTJOHPOMPDBMNBDIJOFBOEGPS EJTUSJCVUFEQSPDFTTJOHPODMVTUFS • )BTHPPE8FC*OUFSGBDFGPSSFBMUJNFKPCNPOJUPSJOH
  8. 1Z4QBSL • CVJMEJO+BWBBOEIBT1ZUIPO*OUFSGBDF • DBOCFNPSFTDBMFPVUUIBODFMFSZBOE%BTL • 0SJHJOBMMZCVJMUUPSVOPOB)BEPPQDMVTUFS • GBTUBOEDPTUFGGJDJFOUQSPDFTTJOH •

    )BTHPPE8FC*OUFSGBDFGPSSFBMUJNFKPCNPOJUPSJOH • FBTZUPXSJUFDPNQSFY QSPHSBNXJUISJDIPQFSBUPST • NVMUJGVODUJPOBM • TUSFBN "1* • NBDIJOFMFBSOJOH"1* • DBOCFVTFJONBOBHFNFOUTFSWJDFJODMPVETFSWJDF
  9. $PODMVTJPO • 8FDBOVTFNBDIJOFSFTPVSDFTFGGJDJFOUMZBOETQFFEVQ PVSQSPHSBNXJUIQBSBMMFMEJTUSJCVUFEQSPDFTTJOH • 5IFSFBSFTFWFSBMQBSBMMFMQSPDFTTJOHMJCSBSJFTBWBJMBCMFJO 1ZUIPO • *SFDPNNFOE •

    KPCMJC GPSHFOFSBMVTBHFPGQBSBMMFMJ[N JOPOFNBDIJOF • %BTL GPSQBSBMMFMJ[FQBOEBT%BUB'SBNF QSPHSBN • 1Z4QBSL GPSIVHFEBUBXIJDIDBOOPUIBOEMFJOPOFNBDIJOF
  10. MPI • It is a low-level API and faster than

    other libraries, but it is difficult to use MPI to create software that can be used at the production level • MPI is a low level API. MPI can calcrate faster than Python Libraries with proper integration • MPI doesnʼt have rich partition-tolerance functions like PySpark or other libraries • • PyTorch and ChainerMN use it internally for Distributed DeepLearning