Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Performance Tuning Tips of TensorFlow Inference
Search
chie8842
December 20, 2018
Technology
1
730
Performance Tuning Tips of TensorFlow Inference
https://m3-engineer.connpass.com/event/111354/
2018/12/20 Cookpad×merpay×m3 機械学習 Nightの登壇資料です。
chie8842
December 20, 2018
Tweet
Share
More Decks by chie8842
See All by chie8842
MongoDB Atlas Search のご紹介
chie8842
2
1.4k
MongoDB Atlas Vectorsearchではじめる生成AIアプリ開発
chie8842
3
1.4k
AWS GlueとAWS Lake Formationではじめるデータマネジメント
chie8842
0
990
Distributed Processing in Python
chie8842
2
660
クックパッドにおける推薦(と検索)の取り組み
chie8842
20
7.9k
Understanding distributed processing in Python
chie8842
2
1.9k
クックパッドにおけるCloud AutoML事例
chie8842
9
7.8k
Cookpad_Internship_MLOps_Lecture_2018
chie8842
35
16k
機械学習デプロイを支えるコンテナ技術(Machine Learning on Docker)
chie8842
14
8.3k
Other Decks in Technology
See All in Technology
20250116_JAWS_Osaka
takuyay0ne
2
190
re:Invent2024 KeynoteのAmazon Q Developer考察
yusukeshimizu
1
120
AWSマルチアカウント統制環境のすゝめ / 20250115 Mitsutoshi Matsuo
shift_evolve
0
100
今年一年で頑張ること / What I will do my best this year
pauli
1
220
WantedlyでのKotlin Multiplatformの導入と課題 / Kotlin Multiplatform Implementation and Challenges at Wantedly
kubode
0
240
OPENLOGI Company Profile for engineer
hr01
1
18k
FODにおけるホーム画面編成のレコメンド
watarukudo
PRO
2
220
Visual StudioとかIDE関連小ネタ話
kosmosebi
1
360
AWS re:Invent 2024 re:Cap Taipei (for Developer): New Launches that facilitate Developer Workflow and Continuous Innovation
dwchiang
0
150
信頼されるためにやったこと、 やらなかったこと。/What we did to be trusted, What we did not do.
bitkey
PRO
0
2.1k
GeometryReaderやスクロールを用いた表現と紐解き方
fumiyasac0921
0
100
エンジニアリングマネージャー視点での、自律的なスケーリングを実現するFASTという選択肢 / RSGT2025
yoshikiiida
4
3.6k
Featured
See All Featured
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Done Done
chrislema
182
16k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
44
9.4k
How GitHub (no longer) Works
holman
312
140k
Automating Front-end Workflow
addyosmani
1366
200k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Embracing the Ebb and Flow
colly
84
4.5k
Faster Mobile Websites
deanohume
305
30k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
860
YesSQL, Process and Tooling at Scale
rocio
170
14k
Side Projects
sachag
452
42k
Transcript
3
) ( • s W ei Vi h • F
PRP RS X c J • m 2E 12G7C: 1 4G :D :BCn • a .+ + 2 .44 o l • A:) D: C ( 08 : 8E r
• %*+5 !# • .6+5 !# +51/$"# 4'$
• %*)+5/2 &3,0.6 +5/2 & -(
F Tae P eU e p C
2 s • e t • Fnw C i I Tae • c 13 1 • + 25 1 5+ • lo V U • e h • r C
• / .. / .
/ . / :
J ca C F • •
/ Ie • P Ih SU S e • l J C ca C F • P _ • / / . / / . Ifi J C F • _ _ T I d
041 /16 l l 8 :
T o : • 041 /16 : T ( : T F e p . 0 o g n ( n a ) 2 7/ . n
• ) : : () ) ) )
) 1 () ) ) ) 1 ) ) ) () ) ) ) 1 () ) ) 1 S ) . ) =
• 5 .10 8 7 :
2 6/ 3 S
• /1423 025 . F6 l
TU 6on . C 9T P n 8 C 2 . 4 ) ( ) ( ) ( e % . n
clL 488 Ie w MI ng ) 8
5 K K ) 8 5 ( ) 8 5 .83 5 4/ . t iL Th Ly b r x x nga ( 0 :5.
• : FC CIP5/ TX S fe OL. TX
S N C ) C 2 C C C = C C F C A : C C F C : : ) 1 A : 1 C F 10 F:FF ) 3:FF C C ) C g ba c c _ ( J :
/ • dh c a o : • )(4 (
) ) ( ) _a t e gr m • (4 ( ) ) ( ) m • fp = l s SPm C _c i grn 4 . 4 . 4 4 4 . )(4 ( ) ) ( ) 4 . (4 ( ) ) ( ) 4 4 . 4 .
/ • pu alo nde Cm P • 7: 21
1 2 288487 91 6 423 m nde s fCe • 7: 4 1 1 2 288487 91 6 423 P fCe • r C U _ Phi C o s U .452 8 P ( 0 () t /0 % D 7: 21 1 2 288487 91 6 423 7: 4 1 1 2 288487 91 6 423 P
• 8 - n gch y de
Gf ib oz m N • OM rgchw p ʼ ul T s J F 8 . D / : 8 IL : :1 / t B B : 1
• a n 1 D in F 2 P
o F 2 3 • q la t6 n n z 2 D ( ) a 2 e b 2u a
• T • i 1 •