Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習のための数学 〜1次方程式と線形変換, マージンの距離〜
Search
kkeeth
December 12, 2016
Science
2
3.5k
機械学習のための数学 〜1次方程式と線形変換, マージンの距離〜
機械学習を学ぶ上で必要な数学の、「1次方程式」についての資料になります。先にベクトル・行列の計算ができる方が対象となりますのでご注意下さい。
kkeeth
December 12, 2016
Tweet
Share
More Decks by kkeeth
See All by kkeeth
The history of Javascript frameworks: changes in front-end design philosophy
clown0082
2
99
Visually experience the beauty of mathematics with p5.js
clown0082
1
2.7k
Rediscover the joy of coding with Creative Coding
clown0082
0
1.3k
全員が意思決定する会社で開発者体験や生産性を見る大変さについて
clown0082
0
550
JavaScript × Mathematics go to Digital Art
clown0082
1
310
In-house study group at YUMEMI
clown0082
0
160
Playing Ionic Logo by p5.js
clown0082
0
210
Skills that employers recommend students to acquire
clown0082
1
260
Walking through the source code of an OSS Library(ESLint))
clown0082
0
350
Other Decks in Science
See All in Science
20分で分かる Human-in-the-Loop 機械学習におけるアノテーションとヒューマンコンピューターインタラクションの真髄
hurutoriya
4
2.3k
Direct Preference Optimization
zchenry
0
280
ABEMAの効果検証事例〜効果の異質性を考える〜
s1ok69oo
4
2.1k
(論文読み)贈り物の交換による地位の競争と社会構造の変化 - 文化人類学への統計物理学的アプローチ -
__ymgc__
1
100
科学で迫る勝敗の法則(名城大学公開講座.2024年10月) / The principle of victory discovered by science (Open lecture in Meijo Univ. 2024)
konakalab
0
200
様々な侵入者タイプに対応した適切な警備計画の策定 / Patrol route design considering various types of intrudes
konakalab
0
190
位相的データ解析とその応用例
brainpadpr
1
600
Sarcoptic Mange
uni_of_nomi
1
110
Science of Scienceおよび科学計量学に関する研究論文の俯瞰可視化_ポスター版
hayataka88
0
130
Machine Learning for Materials (Lecture 9)
aronwalsh
0
210
解説!データ基盤の進化を後押しする手順とタイミング
shomaekawa
1
340
深層学習を利用して 大豆の外部欠陥を判別した研究事例の紹介
kentaitakura
0
230
Featured
See All Featured
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Unsuck your backbone
ammeep
668
57k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
25
1.8k
Building an army of robots
kneath
302
42k
What's in a price? How to price your products and services
michaelherold
243
12k
Git: the NoSQL Database
bkeepers
PRO
427
64k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.2k
It's Worth the Effort
3n
183
27k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Transcript
Copyright© 2016 Leprachaun Corp. All Rights Reserved 機械学習のための数学 1次方程式と線形変換, マージンの距離
Copyright© 2016 Leprachaun Corp. All Rights Reserved 自己紹介 var my_info =
{ name : ‘Kiyohito Kuwahara’, twitter: ‘@kuwahara_jsri(ちょこちょこ変わります)’, github : ‘k-kuwahara’, qiita : ‘@clown0082’, workplace: ‘Leprachaun Corp.’ }
Copyright© 2016 Leprachaun Corp. All Rights Reserved ※今回は「ベクトル」「行列」の 計算ができる方を対象としています。
Copyright© 2016 Leprachaun Corp. All Rights Reserved 1次方程式
Copyright© 2016 Leprachaun Corp. All Rights Reserved 方程式とは
Copyright© 2016 Leprachaun Corp. All Rights Reserved 方程式とは この子らは2次方程式 この子らは1次方程式
Copyright© 2016 Leprachaun Corp. All Rights Reserved 方程式の次数
Copyright© 2016 Leprachaun Corp. All Rights Reserved 方程式の次数 最大値は「1」 最大値は「2」
Copyright© 2016 Leprachaun Corp. All Rights Reserved 1次方程式を視覚的に見てみよう!
Copyright© 2016 Leprachaun Corp. All Rights Reserved 1次方程式のグラフ
Copyright© 2016 Leprachaun Corp. All Rights Reserved 1次方程式のグラフ 切片と傾きを制すれば、 1次方程式を制す!
Copyright© 2016 Leprachaun Corp. All Rights Reserved 方程式はベクトルで表現できる!
Copyright© 2016 Leprachaun Corp. All Rights Reserved ベクトル方程式 このtを媒介変数と言う このdを方向ベクトルと言う
Copyright© 2016 Leprachaun Corp. All Rights Reserved ベクトル方程式 ベクトルは「向き」と「大きさ」をも つため、その「直線の傾き」をあ らわす
Copyright© 2016 Leprachaun Corp. All Rights Reserved ベクトル方程式
Copyright© 2016 Leprachaun Corp. All Rights Reserved ベクトル方程式 この子らに注目
Copyright© 2016 Leprachaun Corp. All Rights Reserved ベクトル方程式
Copyright© 2016 Leprachaun Corp. All Rights Reserved ベクトル方程式 実際に計算してみよう!
Copyright© 2016 Leprachaun Corp. All Rights Reserved ベクトル方程式 ここがポイント!
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換(イメージ) A x y
x+y Ax Ay A(x+y) 手書きですみません…
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換 これが重要!
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換の例
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換:拡大・縮小 f 3 0
0 2 0 2b 3a 0
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換:回転 1 0 0
1 -sinθ cosθ cosθ sinθ f
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換:反転 f 1 0
0 1 0 1 -1 0
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換(余談1) 解き方に興味がある方は、 ガウスの消去法で調べて みてください!
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換(余談2) Googleで検索すると 「線型」 「線形」 上記の二つを目にすると思いますが,
どちらでも構いません. 昔は「線型」がよく使われていたのですが, 岩波書店などの書籍が「線形」に統一した ため, 現在は「線形」が主流になりました. 「函数」と「関数」 の違いみたいなものです.
Copyright© 2016 Leprachaun Corp. All Rights Reserved マージン(点と直線の距離)
Copyright© 2016 Leprachaun Corp. All Rights Reserved マージン(点と直線の距離):イメージ
Copyright© 2016 Leprachaun Corp. All Rights Reserved この距離がマージンd マージン(点と直線の距離):イメージ
Copyright© 2016 Leprachaun Corp. All Rights Reserved 機械学習(の手法の一つ)で は, これを「誤差」と呼んだり する.
マージン(点と直線の距離):イメージ
Copyright© 2016 Leprachaun Corp. All Rights Reserved マージン(点と直線の距離):定義
Copyright© 2016 Leprachaun Corp. All Rights Reserved マージン(点と直線の距離):定義 機械学習ではこちらの形で 表現されることが多い.
Copyright© 2016 Leprachaun Corp. All Rights Reserved 以上です。
Copyright© 2016 Leprachaun Corp. All Rights Reserved ありがとうございました!