Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習のための数学 〜1次方程式と線形変換, マージンの距離〜
Search
kkeeth
December 12, 2016
Science
2
3.8k
機械学習のための数学 〜1次方程式と線形変換, マージンの距離〜
機械学習を学ぶ上で必要な数学の、「1次方程式」についての資料になります。先にベクトル・行列の計算ができる方が対象となりますのでご注意下さい。
kkeeth
December 12, 2016
Tweet
Share
More Decks by kkeeth
See All by kkeeth
Programming to play with p5.js
clown0082
0
65
とある EM の初めての育休からの学び
clown0082
1
5.1k
The history of Javascript frameworks: changes in front-end design philosophy
clown0082
2
210
Visually experience the beauty of mathematics with p5.js
clown0082
1
3.2k
Rediscover the joy of coding with Creative Coding
clown0082
0
1.8k
全員が意思決定する会社で開発者体験や生産性を見る大変さについて
clown0082
0
650
JavaScript × Mathematics go to Digital Art
clown0082
1
440
In-house study group at YUMEMI
clown0082
0
230
Playing Ionic Logo by p5.js
clown0082
0
320
Other Decks in Science
See All in Science
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
1.1k
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
420
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
190
中央大学AI・データサイエンスセンター 2025年第6回イブニングセミナー 『知能とはなにか ヒトとAIのあいだ』
tagtag
PRO
0
120
Collective Predictive Coding as a Unified Theory for the Socio-Cognitive Human Minds
tanichu
0
160
機械学習 - SVM
trycycle
PRO
1
980
データマイニング - コミュニティ発見
trycycle
PRO
0
210
Distributional Regression
tackyas
0
340
コミュニティサイエンスの実践@日本認知科学会2025
hayataka88
0
130
次代のデータサイエンティストへ~スキルチェックリスト、タスクリスト更新~
datascientistsociety
PRO
2
28k
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
32k
Rashomon at the Sound: Reconstructing all possible paleoearthquake histories in the Puget Lowland through topological search
cossatot
0
530
Featured
See All Featured
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
590
Heart Work Chapter 1 - Part 1
lfama
PRO
5
35k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1.1k
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
3
110
Testing 201, or: Great Expectations
jmmastey
46
8.1k
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
410
Mobile First: as difficult as doing things right
swwweet
225
10k
Context Engineering - Making Every Token Count
addyosmani
9
670
Thoughts on Productivity
jonyablonski
74
5k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Transcript
Copyright© 2016 Leprachaun Corp. All Rights Reserved 機械学習のための数学 1次方程式と線形変換, マージンの距離
Copyright© 2016 Leprachaun Corp. All Rights Reserved 自己紹介 var my_info =
{ name : ‘Kiyohito Kuwahara’, twitter: ‘@kuwahara_jsri(ちょこちょこ変わります)’, github : ‘k-kuwahara’, qiita : ‘@clown0082’, workplace: ‘Leprachaun Corp.’ }
Copyright© 2016 Leprachaun Corp. All Rights Reserved ※今回は「ベクトル」「行列」の 計算ができる方を対象としています。
Copyright© 2016 Leprachaun Corp. All Rights Reserved 1次方程式
Copyright© 2016 Leprachaun Corp. All Rights Reserved 方程式とは
Copyright© 2016 Leprachaun Corp. All Rights Reserved 方程式とは この子らは2次方程式 この子らは1次方程式
Copyright© 2016 Leprachaun Corp. All Rights Reserved 方程式の次数
Copyright© 2016 Leprachaun Corp. All Rights Reserved 方程式の次数 最大値は「1」 最大値は「2」
Copyright© 2016 Leprachaun Corp. All Rights Reserved 1次方程式を視覚的に見てみよう!
Copyright© 2016 Leprachaun Corp. All Rights Reserved 1次方程式のグラフ
Copyright© 2016 Leprachaun Corp. All Rights Reserved 1次方程式のグラフ 切片と傾きを制すれば、 1次方程式を制す!
Copyright© 2016 Leprachaun Corp. All Rights Reserved 方程式はベクトルで表現できる!
Copyright© 2016 Leprachaun Corp. All Rights Reserved ベクトル方程式 このtを媒介変数と言う このdを方向ベクトルと言う
Copyright© 2016 Leprachaun Corp. All Rights Reserved ベクトル方程式 ベクトルは「向き」と「大きさ」をも つため、その「直線の傾き」をあ らわす
Copyright© 2016 Leprachaun Corp. All Rights Reserved ベクトル方程式
Copyright© 2016 Leprachaun Corp. All Rights Reserved ベクトル方程式 この子らに注目
Copyright© 2016 Leprachaun Corp. All Rights Reserved ベクトル方程式
Copyright© 2016 Leprachaun Corp. All Rights Reserved ベクトル方程式 実際に計算してみよう!
Copyright© 2016 Leprachaun Corp. All Rights Reserved ベクトル方程式 ここがポイント!
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換(イメージ) A x y
x+y Ax Ay A(x+y) 手書きですみません…
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換 これが重要!
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換の例
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換:拡大・縮小 f 3 0
0 2 0 2b 3a 0
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換:回転 1 0 0
1 -sinθ cosθ cosθ sinθ f
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換:反転 f 1 0
0 1 0 1 -1 0
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換(余談1) 解き方に興味がある方は、 ガウスの消去法で調べて みてください!
Copyright© 2016 Leprachaun Corp. All Rights Reserved 線形変換(余談2) Googleで検索すると 「線型」 「線形」 上記の二つを目にすると思いますが,
どちらでも構いません. 昔は「線型」がよく使われていたのですが, 岩波書店などの書籍が「線形」に統一した ため, 現在は「線形」が主流になりました. 「函数」と「関数」 の違いみたいなものです.
Copyright© 2016 Leprachaun Corp. All Rights Reserved マージン(点と直線の距離)
Copyright© 2016 Leprachaun Corp. All Rights Reserved マージン(点と直線の距離):イメージ
Copyright© 2016 Leprachaun Corp. All Rights Reserved この距離がマージンd マージン(点と直線の距離):イメージ
Copyright© 2016 Leprachaun Corp. All Rights Reserved 機械学習(の手法の一つ)で は, これを「誤差」と呼んだり する.
マージン(点と直線の距離):イメージ
Copyright© 2016 Leprachaun Corp. All Rights Reserved マージン(点と直線の距離):定義
Copyright© 2016 Leprachaun Corp. All Rights Reserved マージン(点と直線の距離):定義 機械学習ではこちらの形で 表現されることが多い.
Copyright© 2016 Leprachaun Corp. All Rights Reserved 以上です。
Copyright© 2016 Leprachaun Corp. All Rights Reserved ありがとうございました!