Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Deep Learning for clothes and changing pose

Masaki Kozuki
January 31, 2018

Deep Learning for clothes and changing pose

This is my casual survey about deep learning in fashion, especially fashion swapping, virtual try-on, or pose guided generation.

The criteria to read a paper are it uses fashion dataset or not and It
makes me interested

Masaki Kozuki

January 31, 2018
Tweet

More Decks by Masaki Kozuki

Other Decks in Research

Transcript

  1. 'BTIJPOJO$PNQVUFS7JTJPO w 'BTIJPOJTBUUSBDUJOHNPSFBOENPSFSFTFBSDIFST w %FFQ'BTIJPO EBUBTFU  w DPNQBUJCJMJUZFTUJNBUJPO DPPSEJOBUFHSBEJOHDPNQMFNFOUBUJPO

     w IVNBOQBSTJOH TFNBOUJDTFHNFOUBUJPO  w GBTIJPOBSUJDMFBUUSJCVUFTQSFEJDUJPOHFOFSBUJPO w GBTIJPOBSUJDMFEFTJHOTZOUIFTJT 4
  2.  MJTUPGQBQFST Jetchev, N., & Bergmann, U. (2017). The Conditional

    Analogy GAN: Swapping Fashion Articles on People Images. Retrieved from http://arxiv.org/abs/1709.04695 - ZalandoGAN Zhu, S., Fidler, S., Urtasun, R., Lin, D., & Loy, C. C. (2017). Be Your Own Prada: Fashion Synthesis with Structural Coherence. Retrieved from http://arxiv.org/abs/1710.07346 - FashionGAN Han, X., Wu, Z., Wu, Z., Yu, R., & Davis, L. S. (2017). VITON: An Image-based Virtual Try-on Network. Retrieved from http://arxiv.org/abs/1711.08447 - VITON Ma, L., Sun, Q., Georgoulis, S., Van Gool, L., Schiele, B., & Fritz, M. (2017). Disentangled Person Image Generation. Retrieved from http://arxiv.org/abs/1712.02621 - DPIG Siarohin, A., Sangineto, E., Lathuiliere, S., & Sebe, N. (n.d.). Deformable GANs for Pose-based Human Image Generation. Retrieved from https://arxiv.org/pdf/1801.00055.pdf - Deformable GAN GANs for Try-on Ma, L., Sun, Q., Jia, X., Schiele, B., Tuytelaars, T., & Gool, L. Van. (n.d.). Pose Guided Person Image Generation. Retrieved from https://arxiv.org/pdf/1705.09368.pdf - PG2
  3. EBUBTFUDPNQBSJTPO w [BMBOEP w DSFBUFEGSPN[BMBOEPTF w "1*JT<IFSF> w UIFSFJTOPUBOZQVCMJDEBUBTFU w

    %FFQ'BTIJPO w BWBJMBCMF<IFSF> 9 [BMBOEP %FFQ'BTIJPO ;BMBOEP("/ ✔ ✘ 1( ✘ ✔ 'BTIJPO("/ ✘ ✔ 7*50/ ✔ ✘ %1*( ✘ ✔ %FGPSNBCMF ("/ ✘ ✔
  4. NPEFMDPNQBSJTPO w 1&1PTF&TUJNBUPS 10 TJOHMFTUFQ HFOFSBUJPO XJUI1& UFYU ;BMBOEP("/ ✔

    ✘ ✘ 1( ✘ ✔ ✘ 'BTIJPO("/ ✘ ✘ ✔ 7*50/ ✘ ✔̈ ✘ %1*( ✘ ✔ ✘ %FGPSNBCMF ("/ ✘ ✔ ✘ †: use human parser
  5. MPTTDPNQBSJTPO 11 ;BMBOEP("/ $ZDMFMPTT -QOPSN "EWFSTBSJBMMPTT 1( NBTL-  "EWMPTT

    'BTIJPO("/ "EWMPTT 7*50/ -OPSN NBTL  1FSDFQUVBMMPTT %1*( -OPSN NBTL  "EWMPTT 1PTFMPTT NBTLMPTT %FGPSNBCMF("/ "EWMPTT OFBSFTUOFJHICPSMPTT
  6. 1( OJQT w 6/FUMJLFNPEFMTBSFVTFE w 1PTF&TUJNBUPSFYUSBDULFZQPJOUT w HFOFSBUJOHqPX  TUBHFUBLFT

    DPOEJUJPOJNBHF UBSHFUQPTF BTJOQVU  TUBHFUBLFT DPOEJUJPOJNBHF DPBSTFSFTVMU BTJOQVU w (FOFSBUPSTGPSTUBHFTBSFMJLF6/FU 17
  7. 1( w PCKFDUJWF w .BTLFE-MPTTˠ4UBHF w -OPSNPG DPBSTFUBSHFU Y.# w

    "EWFSTBSJBMMPTTˠ4UBHF w .BTLFE-MPTTˠ4UBHF w -OPSNPG SFpOFEUBSHFU Y.# 18 MB
  8. 'BTIJPO("/ JDDW w TXBQQJOHDMPUIFTBDDPSEJOHUPHJWFOUFYU w OFXEBUBTFUBWBJMBCMFJO%FFQ'BTIJPO BDBEFNJDVTF  w OPUSFRVJSFQBJSFEEBUBTFU

    w SFRVJSFTFNBOUJDTFHNFOUBUJPO BCCSFWJBUJPO44  w 44NPEFMBSFUSBJOFEPO"53EBUBTFU w CBTF$//JT7(( 19
  9. 'BTIJPO("/ JDDW w FYUSBDUEFTJHODPEJOH B W BOE44NBQ4 w BWFDUPSPGCJOBSZBUUSJCVUFTPGJOQVUJNBHF
 TPNFBUUSJCVUFTBSFQSFTFSWFEXIJMFHFOFSBUJPO

     w WWFDUPSPGFODPEFEUFYU w 4QFSTPOʟTTFHNFOUBUJPONBQ w IBJS GBDF VQQFSDMPUIFT QBOUTTIPSUT FUD 20
  10. 'BTIJPO("/ w TIBQF(FOFSBUPSUBLFTʠEPXOTBNQMFE4ʡN 4 OPUSBX4 w N 4 XPSLTBTTQBUJBMDPOTUSBJOU w

    HFOFSBUF44NBQ 4 XIJDIJTGPSUBSHFUJNBHF w JNBHF3FOEFSFSUBLFT4BOEEFTJHODPEJOHBTJOQVU 21
  11. 7*50/ w CFUUFSUIBO;BMBOEP("/ w BMTP 7*50/VTFFODPEFSEFDPEFSOFUTJOTUFBEPG("/T w SFRVJSF)VNBO1BSTFS OPU1PTF&TUJNBUPS w

    SFTIBQFDMPUIFTNBTLUPpUUBSHFUDMPUIFTCZ514 w SFEVDFUIFBSFBUPESBXOFXMZBTQPTTJCMF w DPBSTFUPpOFHSBJOFEHFOFSBUJPONFUIPE w QFSDFQUVBMMPTTJOTUFBEPG- CFDBVTFUIFMBUUFSUFOEUPHFOFSBUFCMVSSZJNBHFTXIFOBQQMJFEUPDPMPS JNBHFT w 5PUBM7BSJBUJPO aHSBEaBMQIB  w XBSQFE-OPSNPGaBMQIB 22 TPS
  12. 7*50/ w FODPEFSHFOFSBUPSOFUXPSLT w (D DPBSTF  w JOQVU QFSTPOSFQSFTFOUBUJPO

    UBSHFUDMPUIFT  w PVUQVUDPBSTFSFTVMUBOENBTL w (S SFpOFNFOU  w JOQVU XBSQFEUBSHFU DPBSTFSFTVMU  w PVUQVUBMQIBNBTL 23
  13. %1*( w -PTTGPSTUBHF w QPTFSFDPOTUSVDUJPO- w '(#( w BEWFSTBSJBMMPTTXSUGFBUVSFT w

    %JTDSJNJOBUFXIFUIFSJOQVUJTGSPNFODPEFSTPS(BVTTJBO w -OPSNXSUJOQVUBOESFDPOTUSVDUFEJNBHF 30