Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MongoDB Diagnostics and Performance Tuning
Search
dcrosta
January 23, 2012
Technology
3
1.7k
MongoDB Diagnostics and Performance Tuning
From MongoDB LA, January 19, 2012.
dcrosta
January 23, 2012
Tweet
Share
More Decks by dcrosta
See All by dcrosta
Let the computer write the tests
dcrosta
0
61
Good Test, Bad Test
dcrosta
1
730
Exploring Python Code Objects (PyOhio)
dcrosta
4
310
Python Packaging for Humans
dcrosta
13
500
Exploring Python Code Objects
dcrosta
5
270
Keystone: Python Web Development, Simplified
dcrosta
4
320
MongoDB In the Cloud with Amazon EC2
dcrosta
6
440
Evolution without Migration
dcrosta
2
430
Other Decks in Technology
See All in Technology
dbt開発 with Claude Codeのためのガードレール設計
10xinc
2
1.3k
MagicPod導入から半年、オープンロジQAチームで実際にやったこと
tjoko
0
110
Snowflake×dbtを用いたテレシーのデータ基盤のこれまでとこれから
sagara
0
120
Snowflake Intelligence × Document AIで“使いにくいデータ”を“使えるデータ”に
kevinrobot34
1
120
[ JAWS-UG 東京 CommunityBuilders Night #2 ]SlackとAmazon Q Developerで 運用効率化を模索する
sh_fk2
3
460
Claude Code でアプリ開発をオートパイロットにするためのTips集 Zennの場合 / Claude Code Tips in Zenn
wadayusuke
5
1.1k
データ分析エージェント Socrates の育て方
na0
6
2.2k
S3アクセス制御の設計ポイント
tommy0124
3
200
新規プロダクトでプロトタイプから正式リリースまでNext.jsで開発したリアル
kawanoriku0
1
200
人工衛星のファームウェアをRustで書く理由
koba789
15
8.3k
AI時代を生き抜くエンジニアキャリアの築き方 (AI-Native 時代、エンジニアという道は 「最大の挑戦の場」となる) / Building an Engineering Career to Thrive in the Age of AI (In the AI-Native Era, the Path of Engineering Becomes the Ultimate Arena of Challenge)
jeongjaesoon
0
250
新アイテムをどう使っていくか?みんなであーだこーだ言ってみよう / 20250911-rpi-jam-tokyo
akkiesoft
0
340
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.9k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
4 Signs Your Business is Dying
shpigford
184
22k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
How STYLIGHT went responsive
nonsquared
100
5.8k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.6k
BBQ
matthewcrist
89
9.8k
A Modern Web Designer's Workflow
chriscoyier
696
190k
Agile that works and the tools we love
rasmusluckow
330
21k
Transcript
Diagnostics and Performance Tuning Dan Crosta, 10gen
[email protected]
@lazlofruvous
Agenda •Tools •Performance Indicators
Speed MongoDB is a high-performance database, but how do I
know that I’m getting the best performance
TOOLS
1. mongostat
2.serverStatus > db.serverStatus(); { ! ! "host" : “MacBook.local", "version"
: "2.0.1", "process" : "mongod", "uptime" : 619052, // Lots more stats... }
3.Profiler > db.setProfilingLevel(2); { "was" : 0, "slowms" : 100,
"ok" : 1 }
3.Profiler > db.system.profile.find() { "ts" : ISODate("2011-09-30T02:07:11.370Z"), "op" : "query",
"ns" : "docs.spreadsheets", "query" : { "username": "dcrosta" }, "nscanned" : 20001, "nreturned" : 1, "responseLength" : 241, "millis" : 1407, "client" : "127.0.0.1", "user" : "" }
4.Monitoring Service • MMS: 10gen.com/try-mms • Nagios • Munin
INDICATORS
1.Slow Operations Sun May 22 19:01:47 [conn10] query docs.spreadsheets ntoreturn:100
reslen:510436 nscanned:19976 { username: “dcrosta”} nreturned:100 147ms
2.Replication Lag PRIMARY> rs.status() { "set" : "replSet", "date" :
ISODate("2011-09-30T02:28:21Z"), "myState" : 1, "members" : [ { "_id" : 0, "name" : "MacBook.local:30001", "health" : 1, "state" : 1, "stateStr" : "PRIMARY", "optime" : { "t" : 1317349400000, "i" : 1 }, "optimeDate" : ISODate("2011-09-30T02:23:20Z"), "self" : true }, { "_id" : 1, "name" : "MacBook.local:30002", "health" : 1, "state" : 2, "stateStr" : "SECONDARY", "uptime" : 302, "optime" : { "t" : 1317349400000, "i" : 1 }, "optimeDate" : ISODate("2011-09-28T10:17:47Z"), "lastHeartbeat" : ISODate("2011-09-30T02:28:19Z"),
3.Resident Memory > db.serverStatus().mem { "bits" : 64, // Need
64, not 32 "resident" : 7151, // Physical memory "virtual" : 14248, // Files + heap "mapped" : 6942 // Data files
3.Resident Memory > db.stats() { "db" : "docs", "collections" :
3, "objects" : 805543, "avgObjSize" : 5107.312096312674, "dataSize" : 4114159508, // ~4GB "storageSize" : 4282908160, // ~4GB "numExtents" : 33, "indexes" : 3, "indexSize" : 126984192, // ~126MB "fileSize" : 8519680000, // ~8.5GB "ok" : 1 }
3.Resident Memory ! ! indexSize + dataSize <= RAM
4.Page Faults > db.serverStatus().extra_info { ! "note" : "fields vary
by platform", ! “heap_usage_bytes” : 210656, ! “page_faults” : 2381 }
5.Write Lock Percentage > db.serverStatus().globalLock { "totalTime" : 2809217799, "lockTime"
: 13416655, "ratio" : 0.004775939766854653, }
Concurrency • One writer or many readers • Global RW
Lock • Yields on long-running ops and if we’re likely to go to disk.
High Lock Percentage? You’re Probably Paging!
6.Reader and Writer Queues > db.serverStatus().globalLock { "totalTime" : 2809217799,
"lockTime" : 13416655, "ratio" : 0.004775939766854653, "currentQueue" : { "total" : 1, "readers" : 1, "writers" : 0 }, "activeClients" : { "total" : 2, "readers" : 1, "writers" : 1 }
6.Reader and Writer Queues > db.currentOp() { "inprog" : [
{ "opid" : 6996, "active" : true, "lockType" : "read", "waitingForLock" : true, "secs_running" : 1, "op" : "query", "ns" : "docs.spreadsheets", "query" : { “username” : “Hackett, Bernie” }, "client" : "10.71.194.111:51015", "desc" : "conn", "threadId" : "0x152693000", "numYields" : 0 },
7.Background Flushing > db.serverStatus().backgroundFlushing { "flushes" : 5634, "total_ms" :
83556, "average_ms" : 14.830670926517572, "last_ms" : 4, "last_finished" : ISODate("2011-09-30T03:30:59.052Z") }
Disk Considerations • Raid • SSD • SAN?
8.Connections > db.serverStatus().connections { "current" : 7, "available" : 19993
}
9.Network Speed > db.serverStatus().network { "bytesIn" : 877291, "bytesOut" :
846300, "numRequests" : 9186 }
10.Fragmentation db.spreadsheets.stats() { "ns" : "docs.spreadhseets", "size" : 8200046932, //
~8GB "storageSize" : 11807223808, // ~11GB "paddingFactor" : 1.4302, "totalIndexSize" : 345964544, // ~345MB "indexSizes" : { "_id_" : 66772992, “username_1_filename_1” : 146079744, “username_1_updated_at_1” : 133111808 }, "ok" : 1 }
10.Fragmentation 2 is the Magic Number
storageSize / size > 2 • Might not be reclaiming
free space fast enough • Padding factor might not be correctly calibrated db.spreadsheets.runCommand(“compact”)
paddingFactor > 2 • You might have the wrong data
model • You might be growing documents too much • Should review Schema Design
download at mongoDB.org
We’re Hiring Engineers, Sales, Evangelist, Marketing, Support, Developers @mongodb_jobs http://linkd.in/joinmongo
We’re Always Around For Conferences, Appearances and Meetups 10gen.com/events @mongodb
h2p://bit.ly/mongo8