Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MongoDB Diagnostics and Performance Tuning
Search
dcrosta
January 23, 2012
Technology
3
1.7k
MongoDB Diagnostics and Performance Tuning
From MongoDB LA, January 19, 2012.
dcrosta
January 23, 2012
Tweet
Share
More Decks by dcrosta
See All by dcrosta
Let the computer write the tests
dcrosta
0
47
Good Test, Bad Test
dcrosta
1
700
Exploring Python Code Objects (PyOhio)
dcrosta
4
310
Python Packaging for Humans
dcrosta
13
490
Exploring Python Code Objects
dcrosta
5
250
Keystone: Python Web Development, Simplified
dcrosta
4
300
MongoDB In the Cloud with Amazon EC2
dcrosta
6
430
Evolution without Migration
dcrosta
2
420
Other Decks in Technology
See All in Technology
スキルだけでは満たせない、 “組織全体に”なじむオンボーディング/Onboarding that fits “throughout the organization” and cannot be satisfied by skills alone
bitkey
0
180
AWSではじめる Web APIテスト実践ガイド / A practical guide to testing Web APIs on AWS
yokawasa
8
710
RayでPHPのデバッグをちょっと快適にする
muno92
PRO
0
190
コンピュータビジョンの社会実装について考えていたらゲームを作っていた話
takmin
1
610
Fraxinus00tw assembly manual
fukumay
0
110
わたしがEMとして入社した「最初の100日」の過ごし方 / EMConfJp2025
daiksy
14
5.1k
2/18 Making Security Scale: メルカリが考えるセキュリティ戦略 - Coincheck x LayerX x Mercari
jsonf
0
210
Active Directory攻防
cryptopeg
PRO
8
5.5k
Snowflakeの開発・運用コストをApache Icebergで効率化しよう!~機能と活用例のご紹介~
sagara
1
460
(機械学習システムでも) SLO から始める信頼性構築 - ゆる SRE#9 2025/02/21
daigo0927
0
270
ESXi で仮想化した ARM 環境で LLM を動作させてみるぞ
unnowataru
0
180
Amazon Q Developerの無料利用枠を使い倒してHello worldを表示させよう!
nrinetcom
PRO
2
120
Featured
See All Featured
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.3k
Raft: Consensus for Rubyists
vanstee
137
6.8k
Build The Right Thing And Hit Your Dates
maggiecrowley
34
2.5k
Building Your Own Lightsaber
phodgson
104
6.2k
Building a Scalable Design System with Sketch
lauravandoore
461
33k
Agile that works and the tools we love
rasmusluckow
328
21k
Faster Mobile Websites
deanohume
306
31k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Transcript
Diagnostics and Performance Tuning Dan Crosta, 10gen
[email protected]
@lazlofruvous
Agenda •Tools •Performance Indicators
Speed MongoDB is a high-performance database, but how do I
know that I’m getting the best performance
TOOLS
1. mongostat
2.serverStatus > db.serverStatus(); { ! ! "host" : “MacBook.local", "version"
: "2.0.1", "process" : "mongod", "uptime" : 619052, // Lots more stats... }
3.Profiler > db.setProfilingLevel(2); { "was" : 0, "slowms" : 100,
"ok" : 1 }
3.Profiler > db.system.profile.find() { "ts" : ISODate("2011-09-30T02:07:11.370Z"), "op" : "query",
"ns" : "docs.spreadsheets", "query" : { "username": "dcrosta" }, "nscanned" : 20001, "nreturned" : 1, "responseLength" : 241, "millis" : 1407, "client" : "127.0.0.1", "user" : "" }
4.Monitoring Service • MMS: 10gen.com/try-mms • Nagios • Munin
INDICATORS
1.Slow Operations Sun May 22 19:01:47 [conn10] query docs.spreadsheets ntoreturn:100
reslen:510436 nscanned:19976 { username: “dcrosta”} nreturned:100 147ms
2.Replication Lag PRIMARY> rs.status() { "set" : "replSet", "date" :
ISODate("2011-09-30T02:28:21Z"), "myState" : 1, "members" : [ { "_id" : 0, "name" : "MacBook.local:30001", "health" : 1, "state" : 1, "stateStr" : "PRIMARY", "optime" : { "t" : 1317349400000, "i" : 1 }, "optimeDate" : ISODate("2011-09-30T02:23:20Z"), "self" : true }, { "_id" : 1, "name" : "MacBook.local:30002", "health" : 1, "state" : 2, "stateStr" : "SECONDARY", "uptime" : 302, "optime" : { "t" : 1317349400000, "i" : 1 }, "optimeDate" : ISODate("2011-09-28T10:17:47Z"), "lastHeartbeat" : ISODate("2011-09-30T02:28:19Z"),
3.Resident Memory > db.serverStatus().mem { "bits" : 64, // Need
64, not 32 "resident" : 7151, // Physical memory "virtual" : 14248, // Files + heap "mapped" : 6942 // Data files
3.Resident Memory > db.stats() { "db" : "docs", "collections" :
3, "objects" : 805543, "avgObjSize" : 5107.312096312674, "dataSize" : 4114159508, // ~4GB "storageSize" : 4282908160, // ~4GB "numExtents" : 33, "indexes" : 3, "indexSize" : 126984192, // ~126MB "fileSize" : 8519680000, // ~8.5GB "ok" : 1 }
3.Resident Memory ! ! indexSize + dataSize <= RAM
4.Page Faults > db.serverStatus().extra_info { ! "note" : "fields vary
by platform", ! “heap_usage_bytes” : 210656, ! “page_faults” : 2381 }
5.Write Lock Percentage > db.serverStatus().globalLock { "totalTime" : 2809217799, "lockTime"
: 13416655, "ratio" : 0.004775939766854653, }
Concurrency • One writer or many readers • Global RW
Lock • Yields on long-running ops and if we’re likely to go to disk.
High Lock Percentage? You’re Probably Paging!
6.Reader and Writer Queues > db.serverStatus().globalLock { "totalTime" : 2809217799,
"lockTime" : 13416655, "ratio" : 0.004775939766854653, "currentQueue" : { "total" : 1, "readers" : 1, "writers" : 0 }, "activeClients" : { "total" : 2, "readers" : 1, "writers" : 1 }
6.Reader and Writer Queues > db.currentOp() { "inprog" : [
{ "opid" : 6996, "active" : true, "lockType" : "read", "waitingForLock" : true, "secs_running" : 1, "op" : "query", "ns" : "docs.spreadsheets", "query" : { “username” : “Hackett, Bernie” }, "client" : "10.71.194.111:51015", "desc" : "conn", "threadId" : "0x152693000", "numYields" : 0 },
7.Background Flushing > db.serverStatus().backgroundFlushing { "flushes" : 5634, "total_ms" :
83556, "average_ms" : 14.830670926517572, "last_ms" : 4, "last_finished" : ISODate("2011-09-30T03:30:59.052Z") }
Disk Considerations • Raid • SSD • SAN?
8.Connections > db.serverStatus().connections { "current" : 7, "available" : 19993
}
9.Network Speed > db.serverStatus().network { "bytesIn" : 877291, "bytesOut" :
846300, "numRequests" : 9186 }
10.Fragmentation db.spreadsheets.stats() { "ns" : "docs.spreadhseets", "size" : 8200046932, //
~8GB "storageSize" : 11807223808, // ~11GB "paddingFactor" : 1.4302, "totalIndexSize" : 345964544, // ~345MB "indexSizes" : { "_id_" : 66772992, “username_1_filename_1” : 146079744, “username_1_updated_at_1” : 133111808 }, "ok" : 1 }
10.Fragmentation 2 is the Magic Number
storageSize / size > 2 • Might not be reclaiming
free space fast enough • Padding factor might not be correctly calibrated db.spreadsheets.runCommand(“compact”)
paddingFactor > 2 • You might have the wrong data
model • You might be growing documents too much • Should review Schema Design
download at mongoDB.org
We’re Hiring Engineers, Sales, Evangelist, Marketing, Support, Developers @mongodb_jobs http://linkd.in/joinmongo
We’re Always Around For Conferences, Appearances and Meetups 10gen.com/events @mongodb
h2p://bit.ly/mongo8