Upgrade to Pro — share decks privately, control downloads, hide ads and more …

News diffusion ECREA 2012

Avatar for Till Keyling Till Keyling
May 08, 2012
180

News diffusion ECREA 2012

Avatar for Till Keyling

Till Keyling

May 08, 2012
Tweet

Transcript

  1. Veronika Karnowski, Till Keyling, & Dominik Leiner News diffusion via

    social media platforms: challenging classical DOI theory? 4th European Communication Conference „Social Media and Global Voices“ October 24-27, 2012 Istanbul, Turkey
  2. 2 Social network sites (SNS) and the diffusion of news

    • The S-shaped curve of diffusion could also be confirmed for news diffusion (Deutschmann & Danielson, 1960; Singhal, Rogers & Mahajan, 1999) • SNS are of ever increasing importance as an information source for their users (Purcell, Rainie, Mitchell, Rosenstiel & Olmstead, 2010) • SNS emphasize the social (sharing, recommending) character of news diffusion (Sim & Fu, 2008, Gil de Zúniga, Jung & Valenzuela, 2012) Karnowski, Keyling & Leiner: News diffusion via social media platforms adoption rate time
  3. 3 Why researching news diffusion? • The shape of the

    news diffusion curve can be considered as an indicator of “information equality” (Sinnreich, Chib & Gilbert, 2008) • Interpersonal communication about news can explain media effects on non- users (Maurer 2004, Krause & Gehrau 2007) • Is of relevance in the discussion of substitution effects and cannibalization (Kolo, 2010) Karnowski, Keyling & Leiner: News diffusion via social media platforms
  4. 4 Research questions a) Can we still find the S-shaped

    curve postulated by diffusions of innovations theory? b) Are there differences regarding the process and patterns of diffusion? c) Are there content-specific emphases for each SNS? Karnowski, Keyling & Leiner: News diffusion via social media platforms
  5. 5 • Title • Publication date • Feed update •

    Thematic category Article-RSS-Parser 10 min Shares-Tracker Facebook* − Likes/Recommends − Shares − Comments Twitter* Google+ * API-Calls Bild.de (10) SPON (12) SZ.de (16) CNN.com(13) FOXNews (11) NYT (11) RSS-Feeds Log. scale Data collection: procedure of the automated diffusion- monitoring Karnowski, Keyling & Leiner: News diffusion via social media platforms
  6. 6 Paramters of Diffusion Time Recommendations (Likes, Shares, Comments, Tweets,

    Plusses) t0 Last Measure (5 days) Total Amount of Recommendation t50 50% Amount Point in time where 50% of recommendations reached Publication Karnowski, Keyling & Leiner: News diffusion via social media platforms
  7. 7 An example of a diffusion curve/growth curve • rapid

    increase in the first 2 hours • S-Curve for Comments found • No S-Curve for Tweets? • instantaneous and concurrent diffusion via mass media Karnowski, Keyling & Leiner: News diffusion via social media platforms Comments
  8. 8 Total Amount of Recommendations by Platform Tweets Shares Amount

    of Tweets Amount of Shares Karnowski, Keyling & Leiner: News diffusion via social media platforms
  9. 9 Speed of Diffusion on Twitter by Topic Tweets Karnowski,

    Keyling & Leiner: News diffusion via social media platforms
  10. 11 Summary and discussion  Promising methodology • The first

    four hours are crucial in order to estimate the maximal reach • Less time-critical news categories (Service, Feuilleton & Media, Science & Technic) diffuse a lot more slowly • Faster diffusion via Twitter than via Facebook  Might be an indicator for the supposed difference between Twitter as a news source and Facebook as a plattform for the discussion of news  The s-shaped curve of news diffusion can be confirmed for the discussion of news topics (comments), not for the diffusion per se (shares, tweets) Karnowski, Keyling & Leiner: News diffusion via social media platforms
  11. 12 Thanks for your attention! Veronika Karnowski, Till Keyling &

    Dominik Leiner Institut für Kommunikationswissenschaft und Medienforschung LMU München Karnowski, Keyling & Leiner: News diffusion via social media platforms
  12. 13 Literatur e Deutschmann, P. & Danielson, W. (1960). Diffusion

    of a Major News Story. Journalism Quarterly, 37, 345–355. Gil de Zúñiga, H., Jung, N., & Valenzuela, S. (2012). Social Media Use for News and Individuals’ Social Capital, Civic Engagement and Political Participation. Journal of Computer Mediated Communication, 17(3), 319-336. Kolo, C. (2010). Online-Medien und Wandel: Konvergenz, Diffusion, Substitution [Online-media and change: Convergence, diffusion, substitution]. In W. Schweiger & K. Beck (eds.), Handbuch Online-Kommunikation (pp. 283-307). Wiesbaden: VS Verlag. Krause, B. & Gehrau, V. (2007). Das Paradox der Medienwirkung auf Nichtnutzer am Beispiel einer Zeitreihenanalyse auf Tagesbasis zu den kurzfristigen Agenda-Setting Effekten von Fernsehnachrichten. [The paradoxon of media effects on non-users. The example of short-term agenda-setting-effects auf television news on the basis of daily time series analyses.] Publizistik, 57, 191-209. Maurer, M. (2004). Das Paradox der Medienwirkungsforschung. Verändern Massenmedien die Bevölkerungsmeinung, ohne Einzelne zu beeinflussen? [The paradoxon of media effects research. Do mass media change the public opinion without influencing individuals?] Publizistik, 49, 405-422. Purcell, K., Rainie, L., Mitchell, A., Rosenstiel, T. & Olmstead, K. (2010). Understanding the Participatory News Consumer. PEW Report [http://pewinternet.org/Reports/2010/Online-News.aspx]. Sim, C., & Fu, W. W. (2008). Riding the “Hits” Wave: Informational Cascades in Viewership of Online Videos. 2008 Annual Conference of the International Communication Association. Singhal, A., Rogers, E. M. & Mahajan, M. (1999). The Gods Are Drinking Milk! Word-of-Mouth Diffusion of a Major News Event in India. Asian Journal of Communication, 9(1), 86–107. Sinnreich, A., Chib, A. & Gilbert, J. (2008). Modeling Information Equality: Social and Media Latency Effects on Information Diffusion. International Journal of Communication, 2, 132-159. Karnowski, Keyling & Leiner: News diffusion via social media platforms