Upgrade to Pro — share decks privately, control downloads, hide ads and more …

医療ディープラーニング勉強会
 DL勉強会 第3回 2020.4

Sponsored · SiteGround - Reliable hosting with speed, security, and support you can count on.

医療ディープラーニング勉強会
 DL勉強会 第3回 2020.4

Avatar for M.Inomata

M.Inomata

April 01, 2020
Tweet

More Decks by M.Inomata

Other Decks in Technology

Transcript

  1. ࣗݾ঺հ ழມ ॆԝ (͍ͷ·ͨ ΈͭͻΖ) גࣜձࣾ tech vein ୅දऔక໾ ݉

    σϕϩούʔ twitter: @ino2222 IUUQTXXXUFDIWFJODPN
  2. ᶃA Primer in BERTology: What we know about how BERT

    works BERTֶͷೖ໳ॻɻBERT͕ͲͷΑ͏ʹػೳ͢Δ͔ʹ͍ͭͯ஌͍ͬͯΔ͜ͱ τϥϯεϑΥʔϚʔܕϞσϧ(Transformer-based models)͸ݱ ࡏɺNLPͰ޿͘࢖ΘΕ͍ͯ·͕͢ɺͦͷ಺෦ͷ࢓૊Έʹ͍ͭ ͯ͸·ͩ͋·Γཧղ͞Ε͍ͯ·ͤΜɻຊߘͰ͸ɺ༗໊ͳBERT Ϟσϧ(Devlin et al. 2019)ʹ͍ͭͯɺ40Ҏ্ͷղੳݚڀΛ߹ ੒ͯ͠ɺ͜Ε·Ͱʹ஌ΒΕ͍ͯΔ͜ͱΛઆ໌͠·͢ɻ·ͨɺ ఏҊ͞Ε͍ͯΔϞσϧͷमਖ਼ͱͦͷ܇࿅ϨδʔϜͷ֓ཁΛઆ ໌͠·͢ɻͦͯ͠ɺ͞ΒͳΔݚڀͷํ޲ੑΛ֓આ͠·͢ɻ https://arxiv.org/abs/2002.12327v1
  3. ᶄOn Feature Normalization and Data Augmentation ಛ௃ͷਖ਼نԽͱσʔλ֦ுʹ͍ͭͯ ݱ୅ͷχϡʔϥϧωοτϫʔΫ܇࿅͸ɺҰൠԽΛվળ͢ΔͨΊʹσʔλͷ૿ େʹେ͖͘ґଘ͍ͯ͠·͢ɻϥϕϧอଘܕͷ૿େ๏͕࠷ॳʹ੒ޭͨ͠ޙɺ࠷ۙ Ͱ͸ɺֶश͞Εܾͨఆ໘Λ׈Β͔ʹ͢ΔͨΊʹɺֶशαϯϓϧશମͷಛ௃ͱ

    ϥϕϧΛ૊Έ߹ΘͤΔϥϕϧઁಈ๏΁ͷؔ৺͕ߴ·͍ͬͯ·͢ɻຊ࿦จͰ͸ɺ ಛ௃ͷਖ਼نԽʹΑͬͯநग़͞Εͨୈ1ͱୈ2ͷϞʔϝϯτΛར༻ͨ͠৽͍͠૿ ڧ๏ΛఏҊ͠·͢ɻֶशͨ͠ಛ௃ྔͷϞʔϝϯτΛผͷֶशը૾ͷϞʔϝϯτ ʹஔ͖׵͑Δͱͱ΋ʹɺ໨ඪϥϕϧΛิؒ͢ΔɻզʑͷΞϓϩʔν͸ߴ଎Ͱ ͋Γɺಛ௃ۭؒશମͰಈ࡞͠ɺैདྷͷख๏ͱ͸ҟͳΔ৴߸Λࠞ߹͢ΔͨΊɺ طଘͷ૿ڧख๏ͱޮՌతʹ૊Έ߹ΘͤΔ͜ͱ͕Ͱ͖·͢ɻզʑ͸ɺίϯ ϐϡʔλϏδϣϯɺԻ੠ɺࣗવݴޠॲཧͷϕϯνϚʔΫσʔληοτʹ͓͍ ͯɺͦͷ༗ޮੑΛ࣮ূ͠·ͨ͠ɻ https://arxiv.org/abs/2002.11102v2
  4. ᶆBatch Normalization Biases Deep Residual Networks Towards Shallow Paths όονਖ਼نԽ͸ਂ͍࢒ࠩωοτϫʔΫΛઙ͍ܦ࿏ʹภΒͤΔ

    όονਖ਼نԽʹ͸ෳ਺ͷϝϦοτ͕͋Γ·͢ɻόονਖ਼نԽ͸ଛࣦϥϯυεέʔϓ ͷ৚݅෇͚Λվળ͠ɺڻ͘΄ͲޮՌతͳਖ਼ଇԽΛߦ͍·͢ɻ͔͠͠ɺόονਖ਼نԽ ͷ࠷΋ॏཁͳར఺͸࢒ࠩωοτϫʔΫ(Residual Network)ʹ͓͍ͯੜ͡·͢ɻॳظ Խͷࡍɺόονਖ਼نԽ͸ɺωοτϫʔΫͷਂ͞ͷฏํࠜʹൺྫͨ͠ਖ਼نԽ܎਺ʹ ΑͬͯɺεΩοϓ઀ଓʹର͢Δ࢒ࠩ෼ذΛμ΢ϯεέʔϧ͠·͢ɻ͜ΕʹΑΓɺτ Ϩʔχϯάͷॳظஈ֊Ͱ͸ɺਂ͍ਖ਼نԽ͞Εͨ࢒ࠩωοτϫʔΫʹΑͬͯܭࢉ͞Ε ͨؔ਺͸ɺྑ޷ͳޯ഑Λ࣋ͭઙ͍ύεʹΑͬͯࢧ഑͞ΕΔ͜ͱ͕อূ͞Ε·͢ɻ͜ ͷಎ࡯Λ༻͍ͯɺਖ਼نԽͳ͠Ͱඇৗʹਂ͍࢒ࠩωοτϫʔΫΛ܇࿅Ͱ͖Δ؆୯ͳॳ ظԽεΩʔϜΛ։ൃͨ͠ɻ·ͨɺόονਖ਼نԽ͸ΑΓେ͖ͳֶश཰Ͱ҆ఆֶͨ͠श ΛՄೳʹ͠·͕͢ɺ͜ͷར఺͸େ͖ͳόοναΠζͷֶशΛฒྻԽ͍ͨ͠৔߹ʹͷ Έ༗༻Ͱ͋Δ͜ͱΛ໌Β͔ʹ͠·ͨ͠ɻզʑͷ݁Ռ͸ɺҟͳΔΞʔΩςΫνϟʹ͓ ͚Δόονਖ਼نԽͷར఺Λ෼཭͢Δͷʹ໾ཱͪ·͢ɻ https://arxiv.org/abs/2002.10444v1
  5. ᶇAutoML-Zero: Evolving Machine Learning Algorithms From Scratch. AutoML-Zero: εΫϥον͔ΒͷػցֶशΞϧΰϦζϜͷਐԽ ػցֶशͷݚڀ͸ɺϞσϧߏ଄΍ֶशํ๏ͳͲଟ໘తʹਐΜͰ͍·͢ɻAutoMLͱͯ͠஌ΒΕΔ͜

    ͷΑ͏ͳݚڀΛࣗಈԽ͠Α͏ͱ͢Δ౒ྗ΋·ͨɺେ͖ͳਐาΛ਱͖͛ͯ·ͨ͠ɻ͔͠͠ɺ͜ͷਐา ͸ओʹχϡʔϥϧωοτϫʔΫͷΞʔΩςΫνϟʹয఺Λ౰ͯͨ΋ͷͰ͋Γɺ͜͜Ͱ͸ɺϏϧσΟ ϯάϒϩοΫͱͯ͠ߴ౓ͳઐ໳Ո͕ઃܭͨ͠૚ʹґଘ͍ͯ͠·ͨ͠--͋Δ͍͸ಉ༷ʹ੍ݶͷ͋Δ୳ ࡧۭؒʹґଘ͍ͯ͠·ͨ͠ɻࢲͨͪͷ໨ඪ͸ɺAutoML͕͞ΒʹਐԽͰ͖Δ͜ͱΛࣔ͢͜ͱͰ͋Γ ·͢ɻզʑ͸ɺҰൠతͳݕࡧۭؒΛ௨ͯ͠ਓؒͷόΠΞεΛେ෯ʹ௿ݮ͢Δ৽͍͠ϑϨʔϜϫʔΫ Λಋೖ͢Δ͜ͱʹΑͬͯɺ͜ΕΛ࣮ূ͠·͢ɻ͜ͷۭؒͷ޿େ͞ʹ΋͔͔ΘΒͣɺਐԽత୳ࡧ͸ όοΫϓϩύήʔγϣϯʹΑͬͯ܇࿅͞Εͨ2૚ͷχϡʔϥϧωοτϫʔΫΛൃݟ͢Δ͜ͱ͕Ͱ͖ ·͢ɻ͜ΕΒͷ୯७ͳχϡʔϥϧωοτϫʔΫ͸ɺͦͷޙɺؔ৺ͷ͋ΔλεΫɺྫ͑͹CIFAR-10ͷ มछͰ௚઀ਐԽͤ͞Δ͜ͱͰɺόΠϦχΞΠϯλϥΫγϣϯɺਖ਼نԽޯ഑ɺॏΈฏۉԽͳͲͷτο ϓΞϧΰϦζϜʹݱ୅తͳٕज़͕ݱΕΔ͜ͱͰ͙྇͜ͱ͕Ͱ͖·͢ɻ͞ΒʹɺਐԽ͸ΞϧΰϦζϜ ΛҟͳΔλεΫλΠϓʹదԠͤ͞·͢ɻθϩ͔ΒػցֶशΞϧΰϦζϜΛൃݟͨ͜͠ΕΒͷ༧උత ͳ੒ޭ͸ɺ͜ͷ෼໺ͷ༗๬ͳ৽͍͠ํ޲ੑΛ͍ࣔͯ͠Δͱ৴͍ͯ͡·͢ɻ https://arxiv.org/abs/2003.03384v1
  6. ᶈHyper-Parameter Optimization: A Review of Algorithms and Applications. ϋΠύʔύϥϝʔλ࠷దԽ. ΞϧΰϦζϜͱΞϓϦέʔγϣϯͷϨϏϡʔ

    σΟʔϓχϡʔϥϧωοτϫʔΫ͕։ൃ͞ΕͯҎདྷɺ೔ৗੜ׆ʹଟେͳߩݙΛ͖ͯ͠·ͨ͠ɻػ ցֶश͸ɺ೔ৗੜ׆ͷ΄΅͢΂ͯͷଆ໘ʹ͓͍ͯɺਓ͕ؒͰ͖ΔҎ্ͷ߹ཧతͳΞυόΠεΛఏ ڙͯ͘͠Ε·͢ɻ͔͠͠ɺ͜ͷΑ͏ͳ੒Ռʹ΋͔͔ΘΒͣɺχϡʔϥϧωοτϫʔΫͷઃܭͱ܇ ࿅͸ɺґવͱͯ͠ࠔ೉Ͱ༧ଌෆՄೳͳखॱͰ͢ɻҰൠతͳϢʔβʔͷٕज़తͳᮢ஋ΛԼ͛ΔͨΊ ʹɺࣗಈԽ͞ΕͨϋΠύʔύϥϝʔλ࠷దԽ(HPO)͸ɺֶज़తʹ΋࢈ۀతʹ΋ਓؾͷ͋Δτϐο Ϋͱͳ͍ͬͯ·͢ɻຊ࿦จͰ͸ɺϋΠύʔύϥϝʔλ࠷దԽʹؔ͢Δ࠷΋ॏཁͳτϐοΫͷϨ ϏϡʔΛߦ͍·͢ɻ࠷ॳʹɺϞσϧͷֶश΍ߏ଄ʹؔ࿈͢ΔओཁͳϋΠύʔύϥϝʔλΛ঺հ ͠ɺͦͷॏཁੑͱ஋ҬΛఆٛ͢Δํ๏Λ࿦͡·͢ɻ࣍ʹɺओཁͳ࠷దԽΞϧΰϦζϜͱͦͷద༻ ੑʹয఺Λ౰ͯɺಛʹਂ૚ֶशωοτϫʔΫʹର͢Δޮ཰ͱਫ਼౓Λ໢ཏ͍ͯ͠·͢ɻ࣍ʹɺHPO ͷͨΊͷओཁͳαʔϏε΍πʔϧΩοτΛϨϏϡʔ͠ɺ࠷ઌ୺ͷݕࡧΞϧΰϦζϜ΁ͷରԠɺओ ཁͳਂ૚ֶशϑϨʔϜϫʔΫͰͷ࣮ݱੑɺϢʔβ͕ઃܭͨ͠৽͍͠Ϟδϡʔϧ΁ͷ֦ுੑΛൺֱ ͠·͢ɻ࠷ޙʹɺHPOΛਂ૚ֶशʹద༻ͨ͠৔߹ͷ໰୊఺ɺ࠷దԽΞϧΰϦζϜؒͷൺֱɺݶΒ ΕͨܭࢉࢿݯͰͷϞσϧධՁͷͨΊͷஶ໊ͳΞϓϩʔνΛ঺հ͠ɺ࿦จΛకΊ͘͘Γ·͢ɻ https://arxiv.org/abs/2003.05689v1
  7. ᶉA Survey on Contextual Embeddings จ຺తΤϯϕοσΟϯάʹؔ͢Δௐࠪ ELMo΍BERTͳͲͷจ຺ʹج͍ͮͨΤϯϕοσΟϯά͸ɺ Word2VecͷΑ͏ͳάϩʔόϧͳ୯ޠදݱΛ௒͑ͯɺ෯޿͍ࣗવݴ ޠॲཧλεΫʹ͓͍ͯըظతͳύϑΥʔϚϯεΛ࣮ݱ͠·͢ɻจ຺ ʹج͍ͮͨΤϯϕοσΟϯά͸ɺ֤୯ޠʹͦͷจ຺ʹج͍ͮͨදݱ

    ΛׂΓ౰ͯΔ͜ͱͰɺ༷ʑͳจ຺Ͱͷ୯ޠͷ࢖༻Λัଊ͠ɺݴޠؒ Ͱ఻ୡ͞ΕΔ஌ࣝΛූ߸Խ͠·͢ɻຊௐࠪͰ͸ɺطଘͷจ຺ʹجͮ ͘ຒΊࠐΈϞσϧɺݴޠԣஅతͳϙϦάϩοτͷࣄલ܇࿅ɺԼྲྀλ εΫʹ͓͚Δจ຺ʹجͮ͘ຒΊࠐΈͷԠ༻ɺϞσϧѹॖɺϞσϧղ ੳΛϨϏϡʔ͠·͢ɻ https://arxiv.org/abs/2003.07278v1
  8. ᶊReZero is All You Need: Fast Convergence at Large Depth.

    ReZero͕͋Ε͹େৎ෉ɻେਂ౓Ͱͷߴ଎ऩଋ σΟʔϓωοτϫʔΫ͸ɺྖҬΛ௒͑ͯେ෯ͳੑೳ޲্ΛՄೳʹ͠·͕ͨ͠ɺଟ͘ͷ৔߹ɺফ ࣦ/രൃతͳޯ഑ʹ೰·͞Ε͍ͯ·͢ɻ͜Ε͸ಛʹτϥϯεϑΥʔϚʔΞʔΩςΫνϟʹ౰ͯ͸ ·Γɺେن໛ͳσʔληοτ΍ܭࢉ༧ࢉ͕ͳ͍ͱ12૚Λ௒͑Δਂ͞ͷֶश͕ࠔ೉Ͱ͢ɻҰൠత ʹɺඇޮ཰ͳ৴߸఻೻͕σΟʔϓωοτϫʔΫͷֶशΛ્֐͢Δ͜ͱ͕Θ͔͍ͬͯ·͢ɻτϥ ϯεͰ͸ɺϚϧνϔουͷࣗݾ஫ҙ͕͜ͷѱ͍৴߸఻೻ͷओͳݪҼͱͳ͍ͬͯ·͢ɻਂ૚৴߸ ఻೻Λଅਐ͢ΔͨΊʹɺզʑ͸ReZeroΛఏҊ͠·͢ɻ͜Ε͸ΞʔΩςΫνϟΛ؆୯ʹมߋͨ͠ ΋ͷͰɺϨΠϠʔ͝ͱʹ1ͭͷ௥ՃֶशύϥϝʔλΛ࢖༻ͯ͠ɺ೚ҙͷϨΠϠʔΛಉҰੑϚο ϓͱͯ͠ॳظԽ͢Δ΋ͷͰ͢ɻզʑ͸͜ͷٕज़ΛݴޠϞσϦϯάʹద༻͠ɺ100૚Ҏ্ͷ ReZero-τϥϯεϑΥʔϚʔωοτϫʔΫΛ؆୯ʹ܇࿅Ͱ͖Δ͜ͱΛൃݟ͠·ͨ͠ɻ12૚ͷτ ϥϯεϑΥʔϚʔʹద༻͢Δͱɺenwiki8ͰReZero͸56%଎͘ऩଋ͠·͢ɻReZero͸ TransformerΛ௒͑ͯଞͷ࢒ࠩωοτϫʔΫʹ΋ద༻͞Εɺਂ͍׬શʹ઀ଓ͞ΕͨωοτϫʔΫ Ͱ͸1,500%଎͘ऩଋ͠ɺCIFAR 10Ͱ܇࿅͞ΕͨResNet-56Ͱ͸32%଎͘ऩଋ͠·͢ɻ https://arxiv.org/abs/2003.04887v1
  9. ᶋLagrangian Neural Networks ϥάϥϯδϡχϡʔϥϧωοτϫʔΫ ੈքͷਖ਼֬ͳϞσϧ͸ɺͦͷجૅͱͳΔରশੑͷ֓೦ʹج͍ͮͯߏங͞Ε͍ͯ·͢ɻ෺ཧֶ Ͱ͸ɺ͜ΕΒͷରশੑ͸ΤωϧΪʔ΍ӡಈྔͳͲͷอଘଇʹରԠ͍ͯ͠·͢ɻ͔͠͠ɺ χϡʔϥϧωοτϫʔΫϞσϧ͸෺ཧֶ෼໺Ͱͷར༻͕૿͍͑ͯΔʹ΋͔͔ΘΒͣɺ͜ΕΒ ͷରশੑΛֶश͢Δͷʹۤ࿑͍ͯ͠·͢ɻຊ࿦จͰ͸ɺχϡʔϥϧωοτϫʔΫΛ༻͍ͯ೚ ҙͷϥάϥϯδΞϯΛύϥϝʔλԽͰ͖ΔϥάϥϯδΞϯχϡʔϥϧωοτϫʔΫ(LNN)Λ ఏҊ͠·͢ɻϋϛϧτχΞϯΛֶश͢ΔϞσϧͱ͸ରরతʹɺLNN͸ਖ਼४࠲ඪΛඞཁͱ͠ͳ

    ͍ͨΊɺਖ਼४ӡಈྔ͕ෆ໌Ͱ͋ͬͨΓɺܭࢉ͕ࠔ೉ͳ৔߹ʹ༗ޮͰ͢ɻ͜Ε·ͰͷΞϓϩʔ νͱ͸ҟͳΓɺզʑͷख๏͸ֶश͞ΕͨΤωϧΪʔͷؔ਺ܗࣜΛ੍ݶͤͣɺ༷ʑͳλεΫͷ ͨΊͷΤωϧΪʔอଘϞσϧΛੜ੒͠·͢ɻզʑ͸ɺೋॏৼΓࢠͱ૬ର࿦తཻࢠͰզʑͷΞ ϓϩʔνΛςετ͠ɺϕʔεϥΠϯΞϓϩʔνͰ͸ࢄҳ͕ൃੜ͢ΔΤωϧΪʔอଘΛ࣮ূ ͠ɺϋϛϧτχΞϯΞϓϩʔνͰ͸ࣦഊ͢Δਖ਼४࠲ඪͷͳ͍૬ରੑཧ࿦ΛϞσϧԽ͠·͢ɻ ࠷ޙʹɺϥάϥϯδϡάϥϑωοτϫʔΫΛ༻͍ͯɺ͜ͷϞσϧ͕ͲͷΑ͏ʹάϥϑ΍࿈ଓ ܥʹద༻Ͱ͖Δ͔Λࣔ͠ɺ1࣍ݩ೾ಈํఔ্ࣜͰ࣮ূ͠·͢ɻ https://arxiv.org/abs/2003.04630v1
  10. ᶌSet-Structured Latent Representations ू߹ߏ଄Խજࡏදݱ ߏ଄Խ͞Ε͍ͯͳ͍σʔλ͸ɺγʔϯͷΠϝʔδͷதͷΦϒδΣΫτͷΑ͏ ʹɺજࡏతͳߏ੒ཁૉͷߏ଄Λ͍࣋ͬͯΔ͜ͱ͕ଟ͍Ͱ͢ɻ͜ͷΑ͏ͳঢ়گͰ ͸ɺແடংͳίϨΫγϣϯ΍ set ͕જࡏతͳߏ଄ͱͳΓ·͢ɻ͔͠͠ɼ͜ͷΑ ͏ͳදݱΛσʔλ͔Β௚઀ֶश͢Δ͜ͱ͸ɼ཭ࢄతͰແடংͳߏ଄ͷͨΊࠔ೉

    Ͱ͢ɻ ͜͜Ͱ͸ɼू߹ߏ଄Λ࣋ͭજࡏදݱΛඍ෼Մೳʹֶश͢ΔͨΊͷϑϨʔ ϜϫʔΫΛ։ൃ͠·͢ɻ͜ͷϑϨʔϜϫʔΫΛ༻͍ͯɺը૾ͳͲͷσʔλΛࣗ વʹղऍՄೳͰҙຯͷ͋Δ੒෼ͷू߹ʹ෼ղ͢Δํ๏Λࣔ͠ɺطଘͷख๏Ͱ͸ ؔ࿈͢Δߏ଄Λద੾ʹ੾Γ཭͢͜ͱ͕Ͱ͖ͳ͍͜ͱΛࣔ͠·͢ɻ·ͨɺզʑͷ ํ๏࿦Λɺηοτݻ༗ͷૢ࡞Λ࢖༻͢ΔηοτϚονϯάͷΑ͏ͳԼྲྀͷλε Ϋʹ·Ͱ֦ு͢Δํ๏΋ࣔ͠·͢ɻզʑͷίʔυ͸ͪ͜Βͷhttps URL͔Βೖख ՄೳͰ͢ɻ https://arxiv.org/abs/2003.04448v1
  11. ᶃLearning to Simulate Complex Physics with Graph Networks άϥϑωοτϫʔΫΛ༻͍ͨෳࡶͳ෺ཧֶͷγϛϡϨʔγϣϯͷֶश ͜͜Ͱ͸ɺγϛϡϨʔγϣϯֶशͷͨΊͷҰൠతͳϑϨʔϜϫʔΫΛఏࣔ͠ɺྲྀମɺ߶ମɺ

    มܗՄೳͳ෺࣭͕૬ޓʹ࡞༻͍ͯ͠Δ༷ʑͳ෺ཧྖҬͰ࠷ઌ୺ͷੑೳΛൃش͢Δ୯ҰϞσϧ ͷ࣮૷Λఏڙ͠·͢ɻզʑͷϑϨʔϜϫʔΫʢզʑ͕ʮάϥϑωοτϫʔΫϕʔεγϛϡϨʔ λʯʢGNSʣͱݺͿʣ͸ɺ෺ཧγεςϜͷঢ়ଶΛཻࢠͰදݱ͠ɺάϥϑͷϊʔυͱͯ͠දݱ ͠ɺֶश͞ΕͨϝοηʔδύογϯάΛհͯ͠μΠφϛΫεΛܭࢉ͠·͢ɻͦͷ݁Ռɺզʑͷ Ϟσϧ͸ɺֶशதͷ਺ઍݸͷύʔςΟΫϧΛ༻͍ͨγϯάϧλΠϜεςοϓͷ༧ଌ͔Βɺҟͳ Δॳظ৚݅ɺ਺ઍݸͷλΠϜεςοϓɺࢼݧ࣌ʹ͸গͳ͘ͱ΋ҰܻҎ্ͷύʔςΟΫϧΛ༻͍ ͨ༧ଌ΁ͱҰൠԽͰ͖Δ͜ͱ͕ࣔ͞Ε·ͨ͠ɻզʑͷϞσϧ͸ɺ༷ʑͳධՁࢦඪͷϋΠύʔ ύϥϝʔλͷબ୒ʹରͯ͠ϩόετͰͨ͠ɻ௕ظతͳੑೳͷओͳܾఆཁҼ͸ɺϝοηʔδ௨ աεςοϓͷ਺ͱɺ܇࿅σʔλΛϊΠζͰഁյ͢Δ͜ͱʹΑΔΤϥʔͷ஝ੵΛܰݮ͢Δ͜ͱ Ͱͨ͠ɻզʑͷGNSϑϨʔϜϫʔΫ͸ɺ͜Ε·ͰͰ࠷΋ਖ਼֬ͳ൚༻ֶश෺ཧγϛϡϨʔλͰ ͋Γɺෳࡶͳॱํ޲͓Αͼٯํ޲ͷ໰୊Λ෯޿͘ղ͘͜ͱ͕ظ଴͞Ε͍ͯ·͢ɻ
  12. ᶄA Primer in BERTology: What we know about how BERT

    works BERTֶ ͷೖ໳ॻɻBERT͕ͲͷΑ͏ʹػೳ͢Δ͔ʹ͍ͭͯ஌͍ͬͯΔ͜ͱ τϥϯεϑΥʔϚʔܕϞσϧ(Transformer-based models)͸ݱ ࡏɺNLPͰ޿͘࢖ΘΕ͍ͯ·͕͢ɺͦͷ಺෦ͷ࢓૊Έʹ͍ͭ ͯ͸·ͩ͋·Γཧղ͞Ε͍ͯ·ͤΜɻຊߘͰ͸ɺ༗໊ͳBERT Ϟσϧ(Devlin et al. 2019)ʹ͍ͭͯɺ40Ҏ্ͷղੳݚڀΛ߹੒ ͯ͠ɺ͜Ε·Ͱʹ஌ΒΕ͍ͯΔ͜ͱΛઆ໌͠·͢ɻ·ͨɺఏ Ҋ͞Ε͍ͯΔϞσϧͷमਖ਼ͱͦͷ܇࿅ϨδʔϜͷ֓ཁΛઆ໌ ͠·͢ɻͦͯ͠ɺ͞ΒͳΔݚڀͷํ޲ੑΛ֓આ͠·͢ɻ https://arxiv.org/abs/2002.12327v1 ॏෳ
  13. ᶅLearning to Shade Hand-drawn Sketches खඳ͖εέονͷӄӨΛֶͿ ઢըεέονͱর໌ํ޲ͷϖΞ͔Βɺৄࡉ͔ͭਖ਼֬ͳܳज़తͳӨΛੜ੒͢ΔͨΊͷશࣗಈ ख๏Λఏࣔ͠·͢ɻ·ͨɺઢըͱӨͷϖΞ͔Βɺর໌ํ޲ͱλά෇͚͞Εͨ1,000ྫͷ৽ ͍͠σʔληοτΛఏڙ͠·͢ɻڻ͘΂͖͜ͱʹɼੜ੒͞ΕͨӨ͸ɼεέον͞Εͨγʔ ϯͷجૅͱͳΔ3Dߏ଄Λૉૣ͘఻͑·͢ɽͦͷ݁ՌɺզʑͷΞϓϩʔνʹΑͬͯੜ੒͞

    ΕͨӨ͸ɺ௚઀࢖༻͢Δ͜ͱ΋ɺΞʔςΟετͷͨΊͷ༏Εͨग़ൃ఺ͱͯ͠࢖༻͢Δ͜ͱ ΋Ͱ͖·͢ɻզʑ͕ఏҊ͢ΔσΟʔϓϥʔχϯάωοτϫʔΫ͕ɺखඳ͖ͷεέονΛड ͚औΓɺજࡏۭؒʹ3DϞσϧΛߏங͠ɺͦͷ݁Ռͱͯ͠ੜ੒͞ΕͨӨΛϨϯμϦϯά͢ Δ͜ͱΛ࣮ূ͍ͯ͠·͢ɻੜ੒͞ΕͨӨ͸ɺखඳ͖ͷઢͱͦͷԼͷ3࣍ݩۭؒΛଚॏ͠ɺ ࣗӨޮՌͷΑ͏ͳચ࿅͞Εͨਖ਼֬ͳσΟςʔϧΛؚΜͰ͍·͢ɻ͞Βʹɺੜ੒͞Εͨγϟ υ΢ʹ͸ɺैདྷͷ3DϨϯμϦϯάख๏Ͱ͸࣮ݱͰ͖ͳ͔ͬͨɺϦϜϥΠςΟϯά΍όο ΫϥΠςΟϯά͔ΒݱΕΔϋϩʔͳͲͷܳज़తͳޮՌؚ͕·Ε͍ͯ·͢ɻ https://arxiv.org/abs/2002.11812v1
  14. ᶆStyleGAN2 Distillation for Feed-forward Image Manipulation. StyleGAN2 ϑΟʔυϑΥϫʔυը૾ૢ࡞ͷͨΊͷৠཹ StyleGAN2͸ɺϦΞϧͳը૾Λੜ੒͢ΔͨΊͷ࠷ઌ୺ͷωοτϫʔΫͰ͢ɻStyleGAN2 ͸ɺજࡏۭؒ಺Ͱͷํ޲ੑ͕ҟͳΔΑ͏ʹ໌ࣔతʹ܇࿅͞Ε͓ͯΓɺજࡏҼࢠΛมԽͤ͞

    ͯޮ཰తͳը૾ૢ࡞ΛՄೳʹ͠·͢ɻطଘͷը૾Λฤू͢Δʹ͸ɺ༩͑ΒΕͨը૾Λ StyleGAN2ͷજࡏۭؒʹຒΊࠐΉඞཁ͕͋Γ·͢ɻόοΫϓϩύήʔγϣϯΛ༻͍ͨજࡏ ίʔυ࠷దԽ͸ɺ࣮ੈքͷը૾ͷ࣭తຒΊࠐΈʹҰൠతʹ༻͍ΒΕ͍ͯ·͕͢ɺଟ͘ͷΞ ϓϦέʔγϣϯͰ͸๏֎ʹ͕͔͔࣌ؒΓ·͢ɻզʑ͸ɺStyleGAN2ͷಛఆͷը૾ૢ࡞Λɺ ରʹͳֶͬͯश͞Εͨը૾ରը૾ωοτϫʔΫʹৠཹ͢Δํ๏ΛఏҊ͢Δɻ݁Ռͱͯ͠ಘ ΒΕΔύΠϓϥΠϯ͸ɺطଘͷGANͷ୅ସͱͯ͠ɺରʹͳ͍ͬͯͳ͍σʔλΛ༻ֶ͍ͯश ͞Ε·͢ɻຊݚڀͰ͸ɺਓؒͷإͷม׵݁ՌΛఏڙ͠·͢ɿੑผަ׵ɺՃྸɾएฦΓɺε λΠϧม׵ɺը૾ϞʔϑΟϯάɻզʑͷख๏Λ༻͍ͨੜ੒ͷ඼࣭͸ɺ͜ΕΒͷಛఆͷλεΫ ʹ͓͍ͯɺStyleGAN2όοΫϓϩύήʔγϣϯ΍ݱࡏͷ࠷ઌ୺ͷख๏ͱಉ౳Ͱ͋Δ͜ͱΛ ࣔ͠·͢ɻ https://arxiv.org/abs/2003.03581v1
  15. ᶇAutoML-Zero: Evolving Machine Learning Algorithms From Scratch. AutoML-Zero: εΫϥον͔ΒͷػցֶशΞϧΰϦζϜͷਐԽ ػցֶशͷݚڀ͸ɺϞσϧߏ଄΍ֶशํ๏ͳͲଟ໘తʹਐΜͰ͍ΔɻAutoMLͱͯ͠஌ΒΕΔ͜ͷ

    Α͏ͳݚڀΛࣗಈԽ͠Α͏ͱ͢Δ౒ྗ΋·ͨɺେ͖ͳਐาΛ਱͖͛ͯ·ͨ͠ɻ͔͠͠ɺ͜ͷਐา͸ ओʹχϡʔϥϧωοτϫʔΫͷΞʔΩςΫνϟʹয఺Λ౰ͯͨ΋ͷͰ͋Γɺ͜͜Ͱ͸ɺϏϧσΟϯ άϒϩοΫͱͯ͠ߴ౓ͳઐ໳Ո͕ઃܭͨ͠૚ʹґଘ͍ͯ͠·ͨ͠--͋Δ͍͸ಉ༷ʹ੍ݶͷ͋Δ୳ࡧ ۭؒʹґଘ͍ͯ͠·ͨ͠ɻࢲͨͪͷ໨ඪ͸ɺAutoML͕͞ΒʹਐԽͰ͖Δ͜ͱΛࣔ͢͜ͱͰ͋Γ· ͢ɻզʑ͸ɺҰൠతͳݕࡧۭؒΛ௨ͯ͠ਓؒͷόΠΞεΛେ෯ʹ௿ݮ͢Δ৽͍͠ϑϨʔϜϫʔΫΛ ಋೖ͢Δ͜ͱʹΑͬͯɺ͜ΕΛ࣮ূ͠·͢ɻ͜ͷۭؒͷ޿େ͞ʹ΋͔͔ΘΒͣɺਐԽత୳ࡧ͸όο ΫϓϩύήʔγϣϯʹΑͬͯ܇࿅͞Εͨ2૚ͷχϡʔϥϧωοτϫʔΫΛൃݟ͢Δ͜ͱ͕Ͱ͖· ͢ɻ͜ΕΒͷ୯७ͳχϡʔϥϧωοτϫʔΫ͸ɺͦͷޙɺؔ৺ͷ͋ΔλεΫɺྫ͑͹CIFAR-10ͷม छͰ௚઀ਐԽͤ͞Δ͜ͱͰɺόΠϦχΞΠϯλϥΫγϣϯɺਖ਼نԽޯ഑ɺॏΈฏۉԽͳͲͷτοϓ ΞϧΰϦζϜʹݱ୅తͳٕज़͕ݱΕΔ͜ͱͰ͙྇͜ͱ͕Ͱ͖·͢ɻ͞ΒʹɺਐԽ͸ΞϧΰϦζϜΛ ҟͳΔλεΫλΠϓʹదԠͤ͞·͢ɻθϩ͔ΒػցֶशΞϧΰϦζϜΛൃݟͨ͜͠ΕΒͷ༧උతͳ ੒ޭ͸ɺ͜ͷ෼໺ͷ༗๬ͳ৽͍͠ํ޲ੑΛ͍ࣔͯ͠Δͱ৴͍ͯ͡·͢ɻ https://arxiv.org/abs/2003.03384v1 ॏෳ
  16. ᶈLagrangian Neural Networks ϥάϥϯδϡχϡʔϥϧωοτϫʔΫ ੈքͷਖ਼֬ͳϞσϧ͸ɺͦͷجૅͱͳΔରশੑͷ֓೦ʹج͍ͮͯߏங͞Ε͍ͯ·͢ɻ෺ཧֶ Ͱ͸ɺ͜ΕΒͷରশੑ͸ΤωϧΪʔ΍ӡಈྔͳͲͷอଘଇʹରԠ͍ͯ͠·͢ɻ͔͠͠ɺ χϡʔϥϧωοτϫʔΫϞσϧ͸෺ཧֶ෼໺Ͱͷར༻͕૿͍͑ͯΔʹ΋͔͔ΘΒͣɺ͜ΕΒ ͷରশੑΛֶश͢Δͷʹۤ࿑͍ͯ͠·͢ɻຊ࿦จͰ͸ɺχϡʔϥϧωοτϫʔΫΛ༻͍ͯ೚ ҙͷϥάϥϯδΞϯΛύϥϝʔλԽͰ͖ΔϥάϥϯδΞϯχϡʔϥϧωοτϫʔΫ(LNN)Λఏ Ҋ͠·͢ɻϋϛϧτχΞϯΛֶश͢ΔϞσϧͱ͸ରরతʹɺLNN͸ਖ਼४࠲ඪΛඞཁͱ͠ͳ͍

    ͨΊɺਖ਼४ӡಈྔ͕ෆ໌Ͱ͋ͬͨΓɺܭࢉ͕ࠔ೉ͳ৔߹ʹ༗ޮͰ͢ɻ͜Ε·ͰͷΞϓϩʔν ͱ͸ҟͳΓɺզʑͷख๏͸ֶश͞ΕͨΤωϧΪʔͷؔ਺ܗࣜΛ੍ݶͤͣɺ༷ʑͳλεΫͷͨ ΊͷΤωϧΪʔอଘϞσϧΛੜ੒͠·͢ɻզʑ͸ɺೋॏৼΓࢠͱ૬ର࿦తཻࢠͰզʑͷΞϓ ϩʔνΛςετ͠ɺϕʔεϥΠϯΞϓϩʔνͰ͸ࢄҳ͕ൃੜ͢ΔΤωϧΪʔอଘΛ࣮ূ͠ɺ ϋϛϧτχΞϯΞϓϩʔνͰ͸ࣦഊ͢Δਖ਼४࠲ඪͷͳ͍૬ରੑཧ࿦ΛϞσϧԽ͠·͢ɻ࠷ޙ ʹɺϥάϥϯδϡάϥϑωοτϫʔΫΛ༻͍ͯɺ͜ͷϞσϧ͕ͲͷΑ͏ʹάϥϑ΍࿈ଓܥʹ ద༻Ͱ͖Δ͔Λࣔ͠ɺ1࣍ݩ೾ಈํఔ্ࣜͰ࣮ূ͠·͢ɻ https://arxiv.org/abs/2003.04630v1 ॏෳ
  17. ᶉMLIR: A Compiler Infrastructure for the End of Moore's Law.

    MLIR: ϜʔΞͷ๏ଇͷऴᖼͷͨΊͷίϯύΠϥج൫ ຊݚڀͰ͸ɺ࠶ར༻ՄೳͰ֦ுՄೳͳίϯύΠϥج൫Λߏங͢ΔͨΊͷ৽͍͠ΞϓϩʔνͰ͋Δ MLIRΛ঺հ͠·͢ɻMLIRͷ໨త͸ɺιϑτ΢ΣΞͷஅยԽʹରॲ͠ɺҟछϋʔυ΢ΣΞͷίϯύ ΠϧΛվળ͠ɺυϝΠϯݻ༗ͷίϯύΠϥΛߏங͢ΔͨΊͷίετΛେ෯ʹ࡟ݮ͠ɺطଘͷίϯύ ΠϥΛ઀ଓ͢ΔͷΛॿ͚Δ͜ͱͰ͢ɻMLIR͸ɺҟͳΔந৅౓ϨϕϧͰͷίʔυੜ੒ثɺτϥϯε ϨʔλɺΦϓςΟϚΠβͷઃܭͱ࣮૷Λ༰қʹ͠ɺ·ͨɺΞϓϦέʔγϣϯυϝΠϯɺϋʔυ΢Σ Ξλʔήοτɺ࣮ߦ؀ڥʹ·͕ͨΔίʔυੜ੒ثɺτϥϯεϨʔλɺΦϓςΟϚΠβͷઃܭͱ࣮૷ Λ༰қʹ͠·͢ɻຊݚڀͰ͸ɼ(1)֦ுͱਐԽͷͨΊʹߏங͞Εͨݚڀ੒Ռ෺ͱͯ͠ͷMLIRʹ͍ͭ ͯٞ࿦͠ɼઃܭɼηϚϯςΟΫεɼ࠷దԽ࢓༷ɼγεςϜɼΤϯδχΞϦϯάʹ͓͍ͯɼ͜ͷ৽͠ ͍ઃܭϙΠϯτ͕΋ͨΒ͢՝୊ͱػձΛ໌Β͔ʹ͠·͢ɽ(2) ίϯύΠϥߏஙίετΛ࡟ݮ͢ΔҰ ൠԽ͞ΕͨΠϯϑϥͱͯ͠ͷMLIRͷධՁ-ଟ༷ͳϢʔεέʔεΛ঺հ͠ɼকདྷͷϓϩάϥϛϯάݴ ޠɼίϯύΠϥɼ࣮ߦ؀ڥɼίϯϐϡʔλΞʔΩςΫνϟͷݚڀͱڭҭͷػձΛࣔ͠·͢ɽ·ͨɼ MLIRͷཧ࿦తࠜڌɼಠࣗͷઃܭݪཧɼߏ଄ɼҙຯ࿦ʹ͍ͭͯ΋঺հ͍ͯ͠·͢ɽ https://arxiv.org/abs/2002.11054v2 લճͱॏෳ
  18. ᶊSLIDE : In Defense of Smart Algorithms over Hardware Acceleration

    for Large-Scale Deep Learning Systems. SLIDE : େن໛σΟʔϓϥʔχϯάγεςϜͷͨΊͷϋʔυ΢ΣΞΞΫηϥϨʔ γϣϯΑΓ΋εϚʔτΞϧΰϦζϜΛकΔͨΊʹɻ σΟʔϓϥʔχϯάʢDLʣΞϧΰϦζϜ͸ɺݱ୅ͷػցֶशγεςϜͷத৺తͳয఺ͱͳ͍ͬͯ·͢ɻσʔ λྔͷ૿Ճʹ൐͍ɺ਺ԯݸͷύϥϝʔλΛ࣋ͭେن໛ͳχϡʔϥϧωοτϫʔΫΛ܇࿅ͯ͠ɺ͜ΕΒͷσʔ λྔΛهԱ͠ɺ࠷ઌ୺ͷਫ਼౓ΛಘΔͷʹे෼ͳ༰ྔΛҡ࣋͢Δ͜ͱ͕Ұൠతʹͳ͖͍ͬͯͯ·͢ɻେن໛ͳ Ϟσϧͱσʔλʹؔ࿈͢ΔߴֹͳܭࢉΛճආ͢ΔͨΊʹɺίϛϡχςΟͰ͸ϞσϧֶशͷͨΊͷઐ༻ϋʔυ ΢ΣΞ΁ͷ౤ࢿ͕૿Ճ͍ͯ͠·͢ɻ͔͠͠ɺಛघͳϋʔυ΢ΣΞ͸ߴՁͰ͋Γɺଟ͘ͷλεΫʹҰൠԽ͢Δ ͜ͱ͸ࠔ೉Ͱ͢ɻΞϧΰϦζϜͷਐา͸ɺNVIDIA-V100 GPUͷΑ͏ͳڧྗͳϋʔυ΢ΣΞʹରͯ͠௚઀త ͳ༏ҐੑΛࣔ͢͜ͱ͕Ͱ͖·ͤΜͰͨ͠ɻ͜ͷ࿦จ͸ྫ֎Λఏڙ͠·͢ɻզʑ͸ɺεϚʔτͳϥϯμϜԽΞ ϧΰϦζϜͱϚϧνίΞฒྻԽͱϫʔΫϩʔυ࠷దԽΛಠࣗʹ༥߹ͤͨ͞SLIDE (Sub-LInear Deep learning Engine)ΛఏҊ͠·͢ɻSLIDE͸CPUͷΈΛ࢖༻͢Δ͜ͱͰɺ࠷దԽ͞ΕͨTensorflow(TF)ͷ࣮૷ ΛGPU্Ͱ࣮ߦͨ͠৔߹ʹൺ΂ͯɺֶशͱਪ࿦ͷ྆ํͷܭࢉྔΛେ෯ʹ࡟ݮ͢Δ͜ͱ͕Ͱ͖·͢ɻۀքن໛ ͷਪ঑σʔληοτΛ༻͍ͨධՁͰ͸ɺ44ίΞͷCPUͰSLIDEΛ࢖༻ͨ͠৔߹ɺTesla V100ͰTFΛ࢖༻͠ ֶͯशͨ͠৔߹ͱൺֱͯ͠ɺ೚ҙͷਫ਼౓ϨϕϧͰ3.5ഒҎ্(1࣌ؒର3.5࣌ؒ)ͷ଎౓Ͱֶश͕ՄೳͰ͋Δ͜ ͱ͕ࣔ͞Ε͍ͯ·͢ɻಉ͡CPUͷϋʔυ΢ΣΞ্Ͱ͸ɺSLIDE͸TFΑΓ10ഒҎ্ߴ଎Ͱ͢ɻ࠶ݱੑͷͨΊͷ ίʔυͱεΫϦϓτΛఏڙ͠·͢ɻ https://arxiv.org/abs/1903.03129v2
  19. ᶋAn Empirical Evaluation of Generic Convolutional and Recurrent Networks for

    Sequence Modeling. γʔέϯεϞσϦϯάͷͨΊͷ൚༻ίϯϘϦϡʔγϣϯɾϦΧϨϯτωοτϫʔ Ϋͷ࣮ূతධՁ ΄ͱΜͲͷਂ૚ֶशͷઐ໳ՈʹͱͬͯɺγʔέϯεϞσϦϯά͸ϦΧϨϯτωοτϫʔΫͱಉٛͰ ͢ɻ ͔͠͠ɺ࠷ۙͷ݁Ռ͸ɺԻ੠߹੒΍ػց຋༁ͳͲͷλεΫʹ͓͍ͯɺίϯϘϦϡʔγϣϯɾ ΞʔΩςΫνϟ͕ϦΧϨϯτɾωοτϫʔΫΑΓ΋༏Ε͍ͯΔ͜ͱΛ͍ࣔͯ͠·͢ɻ ৽͍͠γʔέ ϯεϞσϦϯάͷλεΫ΍σʔληοτ͕ൃੜͨ͠৔߹ɺͲͷΞʔΩςΫνϟΛ࢖༻͢΂͖͔ʁ զʑ͸ɺγʔέϯεϞσϦϯάͷͨΊͷҰൠతͳ৞ΈࠐΈ͓ΑͼϦΧϨϯτΞʔΩςΫνϟͷମܥ తͳධՁΛߦ͍ͬͯ·͢ɻ ͜ΕΒͷϞσϧ͸ɺϦΧϨϯτɾωοτϫʔΫͷϕϯνϚʔΫʹҰൠత ʹ࢖༻͞Ε͍ͯΔ෯޿͍ඪ४λεΫͰධՁ͞Ε͍ͯ·͢ɻ ͦͷ݁Ռɺ୯७ͳ৞ΈࠐΈΞʔΩςΫ νϟ͸ɺଟ༷ͳλεΫ΍σʔληοτʹ͓͍ͯɺLSTMͷΑ͏ͳਖ਼نͷϦΧϨϯτωοτϫʔΫΑ Γ΋༏Ε͍ͯΔ͜ͱ͕ࣔ͞ΕɺҰํͰɺΑΓ௕͍༗ޮϝϞϦΛࣔ͠·ͨ͠ɻ զʑ͸ɺγʔέϯε ϞσϦϯάͱϦΧϨϯτωοτϫʔΫͷؒͷڞ௨ͷؔ࿈ੑΛ࠶ߟ͢΂͖Ͱ͋Γɺ৞ΈࠐΈωοτ ϫʔΫ͸γʔέϯεϞσϦϯάλεΫͷࣗવͳग़ൃ఺ͱΈͳ͢΂͖Ͱ͋Δͱ݁࿦෇͚·ͨ͠ɻ ؔ ࿈͢Δ࡞ۀΛࢧԉ͢ΔͨΊʹɺզʑ͸͜ͷhttp URLͰίʔυΛར༻Ͱ͖ΔΑ͏ʹ͠·ͨ͠ɻ https://arxiv.org/abs/1803.01271v2
  20. ᶌSparse Orthogonal Variational Inference for Gaussian Processes. Ψ΢εաఔͷͨΊͷૄͳ௚ަมྔਪ࿦. ༠ಋ఺Λ༻͍ͨΨ΢εաఔͷεύʔεม෼ۙࣅͷ৽͍͠ղऍΛ঺հ͠ ·͢ɻ͜Ε͸ɺΨ΢εաఔΛ2ͭͷಠཱͨ͠աఔͷ࿨ͱͯ͠෼ղ͢Δ

    ͜ͱʹج͍͍ͮͯ·͢ɻ1ͭ͸༠ಋ఺ͷ༗ݶجఈʹ·͕͓ͨͬͯΓɺ΋ ͏1ͭ͸࢒ΓͷมಈΛัଊ͠·͢ɻ͜ͷఆࣜԽ͕طଘͷۙࣅ஋Λճ෮ ͢Δͱಉ࣌ʹɺݶք໬౓ͷΑΓݫ͍͠Լݶ஋ͱ৽͍֬͠཰తม෼ਪ࿦ ΞϧΰϦζϜΛಘΔ͜ͱ͕Ͱ͖Δ͜ͱΛࣔ͠·͢ɻඪ४ճؼ͔Βʢਂ ͍ʣ৞ΈࠐΈΨ΢εաఔΛ༻͍ͨଟΫϥε෼ྨ·Ͱɺ͍͔ͭ͘ͷΨ΢ εաఔϞσϧʹ͓͍ͯ͜ΕΒͷΞϧΰϦζϜͷޮ཰ੑΛ࣮ূ͠ɺ७ਮ ʹGPϕʔεͷϞσϧͷதͰCIFAR-10Ͱͷ࠷৽ͷ݁ՌΛใࠂ͠·͢ɻ https://arxiv.org/abs/1910.10596v3
  21. ᶆStyleGAN2 Distillation for Feed-forward Image Manipulation. StyleGAN2 ϑΟʔυϑΥϫʔυը૾ૢ࡞ͷͨΊͷৠཹ StyleGAN2͸ɺϦΞϧͳը૾Λੜ੒͢ΔͨΊͷ࠷ઌ୺ͷωοτϫʔΫͰ͢ɻStyleGAN2 ͸ɺજࡏۭؒ಺Ͱͷํ޲ੑ͕ҟͳΔΑ͏ʹ໌ࣔతʹ܇࿅͞Ε͓ͯΓɺજࡏҼࢠΛมԽͤ͞

    ͯޮ཰తͳը૾ૢ࡞ΛՄೳʹ͠·͢ɻطଘͷը૾Λฤू͢Δʹ͸ɺ༩͑ΒΕͨը૾Λ StyleGAN2ͷજࡏۭؒʹຒΊࠐΉඞཁ͕͋Γ·͢ɻόοΫϓϩύήʔγϣϯΛ༻͍ͨજࡏ ίʔυ࠷దԽ͸ɺ࣮ੈքͷը૾ͷ࣭తຒΊࠐΈʹҰൠతʹ༻͍ΒΕ͍ͯ·͕͢ɺଟ͘ͷΞ ϓϦέʔγϣϯͰ͸๏֎ʹ͕͔͔࣌ؒΓ·͢ɻզʑ͸ɺStyleGAN2ͷಛఆͷը૾ૢ࡞Λɺ ରʹͳֶͬͯश͞Εͨը૾ରը૾ωοτϫʔΫʹৠཹ͢Δํ๏ΛఏҊ͢Δɻ݁Ռͱͯ͠ಘ ΒΕΔύΠϓϥΠϯ͸ɺطଘͷGANͷ୅ସͱͯ͠ɺରʹͳ͍ͬͯͳ͍σʔλΛ༻ֶ͍ͯश ͞Ε·͢ɻຊݚڀͰ͸ɺਓؒͷإͷม׵݁ՌΛఏڙ͠·͢ɿੑผަ׵ɺՃྸɾएฦΓɺε λΠϧม׵ɺը૾ϞʔϑΟϯάɻզʑͷख๏Λ༻͍ͨੜ੒ͷ඼࣭͸ɺ͜ΕΒͷಛఆͷλεΫ ʹ͓͍ͯɺStyleGAN2όοΫϓϩύήʔγϣϯ΍ݱࡏͷ࠷ઌ୺ͷख๏ͱಉ౳Ͱ͋Δ͜ͱΛ ࣔ͠·͢ɻ https://arxiv.org/abs/2003.03581v1