Upgrade to Pro — share decks privately, control downloads, hide ads and more …

古典エントロピーと比べて学ぶ量子エントロピー

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.

 古典エントロピーと比べて学ぶ量子エントロピー

Avatar for Etsuji Nakai

Etsuji Nakai

April 15, 2019
Tweet

More Decks by Etsuji Nakai

Other Decks in Science

Transcript

  1. 2 0.1 Կͷ࿩͔ͱ͍͏ͱ ͜͜൒೥΄ͲྔࢠίϯϐϡʔςΟϯάͷษڧΛਐΊ͍ͯͯɺ·ͣ͸ɺఆ൪ͷڭՊॻ [1] Λಡഁͨ͠ͷͰ͕͢ɺྔࢠ৘ใཧ࿦ʹؔ͢Δষ͚ͩ͸ɺͳ͔ͳ͔खڧͯ͘ཧղ͕௥͍͖ͭ ·ͤΜͰͨ͠ɻͦ͜Ͱɺݹయ৘ใཧ࿦ͷڭՊॻ [2] ΛಡΈ௚ͯ͠ɺྔࢠ৘ใཧ࿦ʹಛԽ͠ ͨڭՊॻ

    [3] ΛಡΜͰʜʜͱ΍͖ͬͯͨͷͰ͕͢ɺͦͷதͰɺྔࢠΤϯτϩϐʔʢϊΠϚ ϯΤϯτϩϐʔʣͷੑ࣭ʹڵຯΛ࣋ͭΑ͏ʹͳΓ·ͨ͠ɻ ͦ΋ͦ΋ݹయతͳ৘ใΤϯτϩϐʔʢγϟϊϯΤϯτϩϐʔʣ΋ͦͷఆ͕ٛ࣋ͭҙຯ͸ ࣗ໌Ͱ͸ͳ͘ɺ৘ใཧ࿦ʹؔ͢Δ͞·͟·ͳૢ࡞తղऍʢOperational Interpretationʣʹ ΑΓɺͦͷ໾ׂ͕໌Β͔ʹͳΓ·͢ɻҰํɺྔࢠΤϯτϩϐʔ͸ɺঢ়ଶີ౓ԋࢉࢠΛʮෳ ਺ͷྔࢠঢ়ଶʢ७ਮঢ়ଶʣͷ౷ܭతΞϯαϯϒϧʯͱղऍͨ͠ࡍͷ౷ܭతͳෆ֬ఆੑͱղ ऍ͢Δ͜ͱ͕Ͱ͖·͕͢ɺݹయΤϯτϩϐʔʹྨࣅͷੑ࣭Λ࣋ͭͱͱ΋ʹɺݹయΤϯτϩ ϐʔʹ͸ͳ͍ݻ༗ͷੑ࣭΋͋Γ·͢ɻ͞ΒʹɺݹయΤϯτϩϐʔͱྨࣅͷੑ࣭Λূ໌͢Δ ࡍʹɺྔࢠ࿦ʹݻ༗ͷಛघͳٞ࿦͕ඞཁͱͳΔ৔߹΋͋Γ·͢ɻ ྔࢠΤϯτϩϐʔʹ͍ͭͯ΋ɺ࠷ऴతʹ͸ɺྔࢠ৘ใཧ࿦ʹ͓͚Δૢ࡞తղऍΛ௨͠ ͯɺͦͷ໾ׂɺ͋Δ͍͸ɺఆٛͷଥ౰ੑ͕໌Β͔ʹͳΔ΋ͷͱߟ͑ΒΕ·͢ɻ͔͠͠ͳ͕ Βɺ·ͣ͸ɺݹయΤϯτϩϐʔͱൺֱͯ͠ɺͦͷྨࣅੑɺ͋Δ͍͸ɺ૬ҧੑΛຯΘ͏͜ͱ Ͱɺྔࢠܥʹಛ༗ͷߏ଄ɺ΋͘͠͸ɺྔࢠ৘ใཧ࿦ʹ͓͍ͯྔࢠΤϯτϩϐʔ͕Ռͨ͢໾ ׂͷҰ୺͕֞ؒݟ͑Δ͔΋஌Ε·ͤΜɻͦͷΑ͏ͳૉ๿ͳظ଴ͷ΋ͱʹɺຊߘͰ͸ɺݹయ Τϯτϩϐʔͱൺֱ͠ͳ͕ΒɺྔࢠΤϯτϩϐʔͷ͞·͟·ͳੑ࣭Λ਺ֶతʹಋ͍͍͖ͯ ·͢ɻ ͳ͓ɺݹయ৘ใཧ࿦ͷ஌ࣝ͸લఏͱͯ͠ɺݹయΤϯτϩϐʔͷੑ࣭ʹؔ͢Δূ໌͸ߦ͍ ·ͤΜͷͰɺඞཁͳࡍ͸ɺݹయ৘ใཧ࿦ͷڭՊॻ [2] ͳͲΛࢀߟʹ͍ͯͩ͘͠͞ɻ·ͨɺ ྔࢠ৘ใཧ࿦ͷجૅͱͳΔɺঢ়ଶີ౓ԋࢉࢠʹΑΔྔࢠঢ়ଶͷهड़ͱྔࢠܥͷଌఆʹؔ͢ ΔҰൠ࿦ɺͦͯ͠ɺྔࢠνϟωϧͷߟ͑ํʹ͍ͭͯ͸ɺओཁͳ݁࿦Λ࠷ॳʹ੔ཧ͓͖ͯ͠ ·͢ɻৄࡉʹ͍ͭͯ͸ɺલड़ͷڭՊॻ [1][3] ͳͲΛࢀߟʹ͍ͯͩ͘͠͞ɻ 0.2 લఏ஌ࣝͷ੔ཧ ͸͡Ίʹɺྔࢠ৘ใཧ࿦ʹඞཁͱͳΔྔࢠྗֶͷجૅ஌ࣝΛ·ͱΊ·͢ɻ͋͘·Ͱɺ͜ ͷޙͷٞ࿦ͷલఏΛ੔ཧ͢Δ͜ͱ͕໨తͰ͢ͷͰɺৄࡉͳઆ໌͸ׂѪ͍ͯ͠·͢ɻ
  2. 0.2 લఏ஌ࣝͷ੔ཧ 3 0.2.1 ঢ়ଶີ౓ԋࢉࢠʹΑΔྔࢠঢ়ଶͷهड़ ྔࢠܥͷಛఆͷঢ়ଶʢ७ਮঢ়ଶʣ͸ɺෳૉ਺ C ্ͷώϧϕϧτۭؒʹଐ͢Δ୯ҐϕΫ τϧ |ψ⟩

    ʹΑͬͯهड़͞Ε·͢ɻ͜ΕΛঢ়ଶϕΫτϧͱݺͼ·͢ɻҰൠʹ͸ɺແݶ࣍ݩͷ ώϧϕϧτۭ͕ؒඞཁͱͳΓ·͕͢ɺྔࢠίϯϐϡʔςΟϯάͷจ຺Ͱ͸ɺ΄ͱΜͲͷ৔ ߹ɺ༗ݶ࣍ݩʹݶఆͯ͠ߟ͑·͢ɻ·ͨɺҰఆͷ཭ࢄత֬཰෼෍ p(x) ʹैͬͯɺෳ਺ͷ ྔࢠঢ়ଶ |ψx ⟩ ΛूΊͨू߹ʢΞϯαϯϒϧʣΛࠞ߹ঢ়ଶͱݺͼ·͢ɻૢ࡞తʹ͸ɺࠞ߹ ঢ়ଶ͸࣍ͷΑ͏ʹ࡞Γग़͢͜ͱ͕Ͱ͖·͢ɻ·ͣɺΞϦε͸ɺ֬཰෼෍ p(x) ʹै͏֬཰ ม਺͔ΒαϯϓϧΛ 1 ͭऔಘͯ͠ɺͦͷ݁ՌʹԠͯ͡ɺରԠ͢Δྔࢠঢ়ଶ |ψx ⟩ ΛϘϒʹ ౉͠·͢ɻ͜ͷ࣌ɺϘϒ͕ड͚औͬͨܥ͸ɺΞϯαϯϒϧ {p(x), |ψx ⟩} ʹରԠ͢Δࠞ߹ ঢ়ଶͱͳΓ·͢ɻ ҰൠʹɺΞϯαϯϒϧ {p(x), |ψx ⟩} ʹରԠ͢Δࠞ߹ঢ়ଶ͸ɺ࣍ͷঢ়ଶີ౓ԋࢉࢠʹΑͬ ͯهड़͞Ε·͢ɻ ρ = ∑ x p(x)|ψx ⟩⟨ψx | (1) ྔࢠঢ়ଶ |ψx ⟩ ͕ଐ͢ΔώϧϕϧτۭؒΛ H ͱ͢Δͱɺρ ͸ɺH ͔Β H ΁ͷઢܗԋࢉ ࢠʹͳ͓ͬͯΓɺ͜ͷઢܗԋࢉࢠͷۭؒΛ L(H) ͱ͍͏ه߸Ͱද͠·͢ɻঢ়ଶີ౓ԋࢉࢠ ͸ɺͦͷఆٛΑΓɺτϨʔε͕ 1 Ͱɺ൒ਖ਼ఆ஋ͷΤϧϛʔτԋࢉࢠʹͳΓ·͢ɻτϨʔε ʹ͍ͭͯ͸ɺ࣍ͷܭࢉͰ֬ೝ͢Δ͜ͱ͕Ͱ͖·͢ɻ Tr ρ = ∑ x p(x) ∑ i ⟨i|ψx ⟩⟨ψx |i⟩ = ∑ x p(x) ∑ i ⟨ψx |i⟩⟨i|ψx ⟩ = ∑ x p(x)⟨ψx |ψx ⟩ = ∑ x p(x) = 1 ͜͜Ͱɺ{|i⟩} ͸ɺ⟨i|j⟩ = δij Λຬͨ͢ਖ਼ن௚ަجఈΛද͠·͢ɻ·ͨɺঢ়ଶີ౓ԋࢉ ࢠ͸ΤϧϛʔτԋࢉࢠͰ͋Δ͜ͱ͔Βɺਖ਼ن௚ަܥʹΑΔεϖΫτϧ෼ղ͕ՄೳͰɺ ρ = ∑ i pi |i⟩⟨i| (2) ͱॻ͖௚͢͜ͱ͕Ͱ͖·͢ɻ͜͜Ͱɺ|i⟩ ͸ɺ⟨i|j⟩ = δij Λຬͨ͢ਖ਼ن௚ަجఈΛද͠· ͢ɻͨͩ͠ɺਖ਼ن௚ަجఈͷͱΓํ͸ɺρ ʹґଘͯ͠มΘΔ఺ʹ஫ҙ͕ඞཁͰ͢ɻ·ͨɺ Ұൠʹ (2) ʹݱΕΔݻ༗஋ pi ͸ɺઌʹΞϯαϯϒϧΛߏ੒͢ΔͨΊʹಋೖͨ͠ (1) ͷ֬ ཰෼෍ p(x) ͱ͸ҟͳΓ·͕͢ɺpi ΋·ͨɺ֬཰෼෍ͱͯ͠ղऍ͢Δ͜ͱ͕Ͱ͖·͢ɻͳ
  3. 4 ͥͳΒɺρ ͕൒ਖ਼ఆ஋Ͱ͋Δ͜ͱ͔Β pi ≥ 0 Ͱ͋Γɺρ ͷτϨʔε͕ 1 Ͱ͋Δ͜ͱ͔Βɺ

    ∑ i pi = 1 ͕੒Γཱ͔ͭΒͰ͢ɻͭ·Γɺޓ͍ʹ௚ߦ͢Δͱ͸ݶΒͳ͍ɺ೚ҙͷྔࢠঢ়ଶ |ψx ⟩ Λू Ίͨࠞ߹ঢ়ଶ͸ɺҟͳΔ֬཰෼෍ʹैͬͯɺਖ਼ن௚ަܥ |i⟩ ΛूΊͨࠞ߹ঢ়ଶͱඞͣಉҰ ࢹ͢Δ͜ͱ͕Ͱ͖ΔͷͰ͢ɻ͜͜Ͱݴ͏ʮಉҰࢹʯͱ͍͏ͷ͸ɺϘϒ͔Βݟͨࡍʹɺ(1) ͱ (2) ͸ݪཧతʹ۠ผ͢Δ͜ͱ͕Ͱ͖ͳ͍ͱ͍͏͜ͱͰ͢*1ɻ ͳ͓ɺਖ਼ن௚ަجఈͷ͢΂ͯͷঢ়ଶΛۉ౳ʹؚΉΞϯαϯϒϧͷ৔߹ɺ֤ঢ়ଶ͕ಘΒΕ Δ֬཰͸ɺd = dim H ͱͯ͠ɺ 1 d Ͱ༩͑ΒΕΔͷͰɺରԠ͢Δঢ়ଶີ౓ԋࢉࢠ͸ɺ π = ∑ i 1 d |i⟩⟨i| = 1 d I Ͱ༩͑ΒΕ·͢ɻ͜͜ʹɺI ∈ L(H) ͸ɺ߃౳ԋࢉࢠΛද͠·͢ɻ 0.2.2 ߹੒ܥͷྔࢠঢ়ଶ ώϧϕϧτۭؒ HA ͷঢ়ଶϕΫτϧͰهड़͞ΕΔܥ A ͱɺώϧϕϧτۭؒ HB ͷঢ়ଶ ϕΫτϧͰهड़͞ΕΔܥ B ͕ଘࡏ͢Δ࣌ɺ͜ΕΒΛ 1 ͭͷܥͱΈͳͨ͠ঢ়ଶ͸ɺ͜ΕΒͷ ςϯιϧੵͷۭؒ HA ⊗ HB ʹଐ͢Δঢ়ଶϕΫτϧʹΑͬͯهड़͞Ε·͢ɻͨͱ͑͹ɺܥ A ͱܥ B ͷ૬ޓ࡞༻Λःஅͨ͠ঢ়ଶͰɺͦΕͧΕͷྔࢠঢ়ଶΛ |ψA ⟩ɺ͓Αͼɺ|ψB ⟩ ͱ͠ ͯ༻ҙͨ͠৔߹ɺ͜ΕΒΛ߹੒ͨ͠ܥͷঢ়ଶ͸ςϯιϧੵ |ψA ⟩ ⊗ |ψB ⟩ Ͱ༩͑ΒΕ·͢ɻ ͨͩ͠ɺΑΓҰൠʹ͸ɺෳ਺ͷςϯιϧੵͷઢܗ݁߹ΛͱΔ͜ͱ΋ՄೳͰ͢ɻHA ͱ HB ͷਖ਼ن௚ަجఈΛͦΕͧΕ |iA ⟩ɺ|jB ⟩ ͱ͢Δͱɺςϯιϧੵۭؒ HA ⊗ HB ͸ɺਖ਼ ن௚ަجఈ |iA ⟩ ⊗ |jB ⟩ ͰுΒΕΔͷͰɺ߹੒ܥ AB ͷঢ়ଶϕΫτϧ͸ɺҰൠʹɺ࣍ͷΑ ͏ʹల։͢Δ͜ͱ͕Ͱ͖·͢ɻ |ψAB ⟩ = ∑ i,j cij |iA ⟩ ⊗ |jB ⟩ ͜ͷ࣌ɺܥ AB ͷ೚ҙͷঢ়ଶʢHA ⊗ HB ͷ೚ҙͷཁૉʣ |ψAB ⟩ ʹ͍ͭͯɺܥ A ͱܥ B ͷਖ਼ن௚ަجఈΛ͏·͘औΔͱɺ࣍ͷΑ͏ʹల։Ͱ͖Δ͜ͱ͕஌ΒΕ͍ͯ·͢ɻ |ψAB ⟩ = ∑ i λi |iA ⟩ ⊗ |iB ⟩ (λi ≥ 0) (3) *1 ͜ͷޙͰઆ໌͢ΔΑ͏ʹɺ͜ͷܥʹରͯ͠Ϙϒ͕ߦ͏ଌఆ݁Ռ͸ɺঢ়ଶີ౓ԋࢉࢠͷΈʹΑܾͬͯ·Γ· ͢ɻ͕ͨͬͯ͠ɺϘϒ͸ɺଌఆʹΑͬͯ 2 छྨͷΞϯαϯϒϧ {p(x), |ψx⟩} ͱ {pi, |i⟩} Λ۠ผ͢Δ͜ ͱ͸Ͱ͖·ͤΜɻ͜ͷ͋ͨΓ͔Βɺྔࢠܥ͕࣋ͭʮ৘ใʯͷਂ෵͕֞ؒ͞ݟ͑ͯ͘ΔΑ͏ͳʜʜɻ
  4. 0.2 લఏ஌ࣝͷ੔ཧ 5 ͜ΕΛ߹੒ܥʹର͢Δγϡϛοτ෼ղͱݺͼ·͢ɻ্هͷਖ਼ن௚ަجఈ͸ɺγϡϛοτ ෼ղΛద༻͢Δঢ়ଶ |ψAB ⟩ ʹΑͬͯҟͳΔ఺ʹ஫ҙ͍ͯͩ͘͠͞ɻ࿨ͷ্ݶ͸໌ࣔͯ͠ ͍·ͤΜ͕ɺ౰વͳ͕ΒɺHA ͱ

    HB ͷͦΕͧΕͷ࣍ݩͷখ͍͞ํΛ௒͑Δ͜ͱ͸͋Γ· ͤΜɻ·ͨɺ|ψAB ⟩ ͕୯ҐϕΫτϧͰ͋Δ͜ͱ͔Βɺ ⟨ψAB |ψAB ⟩ = ∑ i λ2 i = 1 ͕੒Γཱͪ·͢ɻ ߹੒ܥ AB ʹ͍ͭͯ΋ɺܥ AɺB ୯ಠͷ৔߹ͱಉ༷ʹࠞ߹ঢ়ଶΛߟ͑Δ͜ͱ͕Ͱ͖· ͢ɻҰൠʹɺΞϯαϯϒϧ {p(x), |ψx AB ⟩} ʹରԠ͢Δঢ়ଶີ౓ԋࢉࢠ͸ɺ࣍Ͱ༩͑ΒΕ ·͢ɻ ρAB = ∑ x p(x)|ψx AB ⟩⟨ψx AB | ͜͜Ͱɺ߹੒ܥ AB ʹ͍ͭͯɺগ͠໘ന͍ঢ়گΛߟ͑·͢ɻࠓɺ2 ਓͷ؍ଌऀɺΞϦε ͱϘϒ͕͍Δͱͯ͠ɺΞϦε͸ܥ A ͷΈɺͦͯ͠ɺϘϒ͸ܥ B ͷΈΛ؍ଌͰ͖Δ΋ͷͱ ͠·͢ɻ͜ͷ࣌ɺΞϦε͕؍ଌ͢Δܥ A ͷঢ়ଶ͸ɺ࣍ͷঢ়ଶີ౓ԋࢉࢠͰهड़͞Ε·͢ɻ ρA = TrB ρAB ͜͜ͰɺTrB ͸ɺ෦෼ۭؒ HB ʹ͍ͭͯͷΈτϨʔεΛऔΔ͜ͱΛද͓ͯ͠Γɺ۩ମ తʹ͸ɺHB ͷਖ਼ن௚ަجఈΛ |jB ⟩ ͱͯ͠ɺ ρA = TrB ρAB = ∑ j ⟨jB |ρAB |jB ⟩ Ͱܭࢉ͞Ε·͢ɻ্هͷܭࢉʹ͓͚Δ ⟨jB | ͱ |jB ⟩ ͸ɺ ਖ਼֬ʹ͸ɺ ߃౳ԋࢉࢠ IA ∈ L(HA ) Λ༻͍ͯɺIA ⊗ ⟨jB |ɺ͓ΑͼɺIA ⊗ |jB ⟩ ͱॻ͘΂͖΋ͷͰ͕͢ɺ͜ͷΑ͏ͳܭࢉʹ͓͚ Δ߃౳ԋࢉࢠ͸هࡌΛলུ͢Δ͜ͱ͕͋Γ·͢ɻ͜Εͱಉ༷ʹɺϘϒ͕؍ଌ͢Δܥ B ͷ ঢ়ଶ͸ɺ࣍ͷঢ়ଶີ౓ԋࢉࢠͰهड़͞Ε·͢ɻ ρB = TrA ρAB ͳ͓ɺ͜ͷΑ͏ͳঢ়گઃఆʹ͓͍ͯ͸ɺϘϒ͕ܥ B ʹର͢ΔଌఆΛߦ͏͜ͱͰɺܥ A ͷঢ়ଶ͕มԽ͢ΔՄೳੑ͕͋Γ·͕͢ɺޙ΄Ͳઆ໌͢ΔΑ͏ʹɺϘϒͷଌఆ݁Ռʹؔ͢Δ ৘ใΛΞϦε͕ೖख͠ͳ͍ݶΓɺΞϦε͔Βݟͨܥ A ͷঢ়ଶ͸ɺঢ়ଶີ౓ԋࢉࢠ ρA Ͱ هड़͞ΕΔ͜ͱʹมΘΓ͋Γ·ͤΜɻ͜ͷΑ͏ʹɺ؍ଌର৅֎ͷܥ B ʹ͍ͭͯτϨʔε ΛͱΔ͜ͱΛʮܥ B ΛτϨʔεΞ΢τ͢Δʯͱݴ͍·͢ɻ
  5. 6 0.2.3 ྔࢠܥʹର͢Δଌఆॲཧ ώϧϕϧτۭؒ H ্ͷܥʹର͢Δ؍ଌՄೳͳ෺ཧྔ͸ɺҰൠʹɺΤϧϛʔτԋࢉࢠ O ∈ L(H) Ͱهड़͞Ε·͢ɻO

    ΛεϖΫτϧ෼ղͯ͠ɺ O = ∑ i Oi |i⟩⟨i| ͱදࣔͨ͠ࡍʹɺ{Oi } ͸ଌఆ݁Ռͱͯ͠ಘΒΕΔ஋ͷू߹ͱͳΓ·͢ɻ·ͨɺঢ়ଶີ౓ ԋࢉࢠ ρ Ͱද͞ΕΔঢ়ଶʹ͍ͭͯଌఆΛߦͬͨࡍʹɺOi ͱ͍͏஋͕؍ଌ͞ΕΔ֬཰͸ɺ Pr [Oi ] = ⟨i|ρ|i⟩ = Tr (|i⟩⟨i|ρ) (4) Ͱܭࢉ͞Ε·͢ɻ͜͜Ͱɺ|i⟩⟨i| ͸ɺO ͷݻ༗஋ Oi ʹରԠ͢Δݻ༗ۭؒ΁ͷࣹӨԋࢉࢠ ʹͳ͍ͬͯ·͢ͷͰɺ(4) ͷؔ܎͸ɺࣹӨԋࢉࢠ Pi = |i⟩⟨i| Λ༻͍ͯɺ Pr [Oi ] = Tr (Pi ρ) ͱද͢͜ͱ΋Ͱ͖·͢ɻ͜ͷ࣌ɺࣹӨԋࢉࢠͷू߹ {Pi } ͸࣍ͷ৚݅Λຬͨ͠·͢ɻ Pi Pj = 0, P2 i = Pi , ∑ i Pi = 1 (5) Ұൠʹɺ͜ΕΒͷ৚݅Λຬࣹͨ͢Өԋࢉࢠ {Pi } ʹΑΔଌఆΛࣹӨଌఆͱݺͼ·͢ɻ· ͨɺଌఆޙʹͦͷ؍ଌ஋Λ֬ೝͤͣʹഁغͨ͠৔߹ɺܥͷঢ়ଶີ౓ԋࢉࢠ͸࣍ʹมԽ͠ ·͢ɻ ρ′ = ∑ i Pi ρPi (6) (6) ͷؔ܎͸ɺ࣍ͷΑ͏ʹಋ͘͜ͱ͕Ͱ͖·͢ɻ·ͣɺҰൠʹ७ਮঢ়ଶ |ψ⟩ ʹࣹӨଌఆ Λߦ͍ɺ؍ଌ஋ Oi ͕ಘΒΕͨ৔߹ɺଌఆޙͷঢ়ଶ͸ɺ Pi |ψ⟩ √ ⟨ψ|Pi |ψ⟩ = Pi |ψ⟩ √ Pr [Oi ] ʹมԽ͠·͢ɻ͕ͨͬͯ͠ɺଌఆޙͷঢ়ଶີ౓ԋࢉࢠ͸ɺ Pi |ψ⟩⟨ψ|Pi Pr [Oi ] ͱܾ·Γ·͢ɻҰํɺଌఆ݁ՌΛ֬ೝ͠ͳ͍৔߹ɺ࠷ऴతͳঢ়ଶ͸ɺ֬཰ Pr [Oi ] Ͱ্ه ͷঢ়ଶ͕ಘΒΕΔΞϯαϯϒϧʹͳΔͷͰɺରԠ͢Δঢ়ଶີ౓ԋࢉࢠ͸ɺ ∑ i Pr [Oi ] Pi |ψ⟩⟨ψ|Pi Pr [Oi ] = ∑ i Pi |ψ⟩⟨ψ|Pi
  6. 0.2 લఏ஌ࣝͷ੔ཧ 7 ͱܾ·Γ·͢ɻ͞Βʹɺ͸͡Ίͷঢ়ଶ͕Ξϯαϯϒϧ {pi , |ψi ⟩} ͔ΒͳΔࠞ߹ঢ়ଶ ρ

    = ∑ i pi |ψ′ i ⟩⟨ψ′ i | ͷ৔߹ɺ্هͷ݁Ռ͕֬཰ pi ͰಘΒΕΔͨΊɺ࠷ऴతͳঢ়ଶີ౓ԋࢉࢠ͸ɺ ρ′ = ∑ i pi Pi |ψ′ i ⟩⟨ψ′ i |Pi = ∑ i Pi ρPi ͱܾ·Γ·͢ɻ ͳ͓ɺྔࢠྗֶͷٞ࿦Ͱ͸ɺ্ड़ͷࣹӨଌఆͷΈΛऔΓѻ͏͜ͱ͕΄ͱΜͲͰ͕͢ɺ ྔࢠ৘ใཧ࿦ͷ࿮૊ΈͰ͸ɺࣹӨଌఆΛ֦ுͨ͠ɺPOVM ʢPositive Operator-Valued Measureʣͱݺ͹ΕΔଌఆॲཧ΋༻͍ΒΕ·͢ɻ͜Ε͸ɺ ∑ i Λi = I ͱ͍͏׬શܥͷ৚݅Λຬͨ͢൒ਖ਼ఆ஋ͷઢܗԋࢉࢠ Λi ∈ L(H) ͷू߹Λ༻͍ͯද͞ΕΔ ଌఆॲཧͰɺi ൪໨ͷ؍ଌ஋͕ಘΒΕΔ֬཰͸ɺ Tr (Λi ρ) Ͱ༩͑ΒΕ·͢ɻ ݱ࣮ͷܥ A ʹରͯ͠ POVM ʹରԠ͢ΔଌఆΛߦ͏ʹ͸ɺଌఆ༻ͷ৽ͨͳܥ R Λ༻ҙ ͯ͠ɺ߹੒ܥ AR ʹҰఆͷखଓ͖Λద༻͢Δඞཁ͕͋Γ·͢ɻ۩ମతͳํ๏ʹ͍ͭͯ͸ɺ [1][3] ͳͲͷඪ४తͳڭՊॻΛࢀর͍ͯͩ͘͠͞ɻ·ͨɺPOVM ͷ৔߹ɺଌఆޙͷܥͷ ঢ়ଶΛ໌ࣔతʹॻ͖ද͢͜ͱ͸Ͱ͖·ͤΜɻPOVM ͸ɺͦΕͧΕͷ؍ଌ஋͕ಘΒΕΔ֬ ཰ͷΈʹڵຯ͕͋Γɺଌఆޙͷܥ͸ഁغ͢Δͱ͍͏લఏͰ༻͍Δख๏ʹͳΓ·͢ɻͳ͓ɺ (5) ͷ৚݅ΑΓɺࣹӨଌఆ͸ɺPOVM ͷಛผͳ৔߹ʹ͋ͨΔ͜ͱ͕Θ͔Γ·͢ɻ ͜͜Ͱ࠷ޙʹɺલ߲Ͱٞ࿦ͨ͠ɺ߹੒ܥ AB ʹ͍ͭͯɺΞϦε͸ܥ A ͷΈɺϘϒ͸ܥ B ͷΈΛ؍ଌ͢Δͱ͍͏ঢ়گΛ΋͏Ұ౓ߟ͑·͢ɻࠓɺܥ AB ͸ঢ়ଶີ౓ԋࢉࢠ ρAB Ͱ هड़͞ΕΔͱͯ͠ɺϘϒ͕ܥ B ʹରͯ͠ɺࣹӨଌఆ PBi Λߦͬͨͱ͠·͢ɻϘϒͷଌఆ ݁ՌΛ֬ೝ͠ͳ͍৔߹ɺଌఆޙͷܥ AB ͷঢ়ଶີ౓ԋࢉࢠ͸࣍ʹͳΓ·͢ɻ ρ′ AB = ∑ i PBi ρAB PBi ͜͜Ͱɺܥ B ΛτϨʔεΞ΢τ͢ΔͱɺτϨʔεͷઢܗੑͱ८ճੑʢTr (ABC) =
  7. 8 Tr (CAB)ʣΛ༻͍ͯɺ࣍ͷ݁Ռ͕ಘΒΕ·͢ɻ TrB ρ′ AB = ∑ i TrB

    (PBi ρAB PBi ) = ∑ i TrB ( P2 Bi ρAB ) = TrB ( ∑ i PBi ρAB ) = TrB ρAB ࠷ޙͷ݁ՌΛݟΔͱɺϘϒ͕ଌఆΛߦ͏લʹɺܥ B ΛτϨʔεΞ΢τͨ͠৔߹ͱಉ͡ ݁Ռʹͳ͓ͬͯΓɺϘϒͷଌఆॲཧʹΑͬͯɺΞϦε͔Βݟͨܥ A ͷঢ়ଶ͸มԽ͠ͳ͍ ͜ͱ͕Θ͔Γ·͢ɻ 0.2.4 ܥͷ७ਮԽʢPurificationʣ ߹੒ܥ AB ͕ HA ⊗ HB ্ͷঢ়ଶϕΫτϧ |ψ⟩ Ͱද͞ΕΔ७ਮঢ়ଶʹ͋Δ΋ͷͱ͠· ͢ɻ͜ͷ࣌ɺܥ B ΛτϨʔεΞ΢τͯ͠ɺܥ A ͷঢ়ଶີ౓ԋࢉࢠΛٻΊΔͱɺ ρA = TrB (|ψ⟩⟨ψ|) ͱͳΓ·͕͢ɺ͜Ε͸ඞͣ͠΋७ਮঢ়ଶͱ͸ݶΓ·ͤΜɻݴ͍׵͑Δͱɺܥશମ͕७ਮঢ় ଶʹ͋Γɺ౷ܭతͳෆ֬ఆੑΛ࣋ͨͳ͍ͱͯ͠΋ɺܥͷҰ෦ͷΈΛ؍ଌ͢Δ؍ଌऀʹ͸ɺ ౷ܭతͳෆ֬ఆੑΛؚΉࠞ߹ঢ়ଶ͕༩͑ΒΕΔ͜ͱʹͳΓ·͢ɻͦͯ͠ɺ໘ന͍͜ͱʹɺ ೚ҙͷࠞ߹ঢ়ଶ͸ɺ͜Εͱಉ͡खଓ͖ͰಘΒΕΔ͜ͱ͕ࣔ͞Ε·͢ɻ ࠓɺܥ A ͸ɺঢ়ଶີ౓ԋࢉࢠ ρA ∈ L(H) Ͱهड़͞ΕΔࠞ߹ঢ়ଶʹ͋Δͱͯ͠ɺρA Λ ࣍ͷΑ͏ʹεϖΫτϧ෼ղ͠·͢ɻ ρA = ∑ i pi |iA ⟩⟨iA | (7) ͜͜ͰɺHA ͱಉ͡ɺ΋͘͠͸ɺͦΕҎ্ͷ࣍ݩΛ࣋ͭώϧϕϧτۭؒ HE Ͱهड़͞Ε Δ؀ڥܥ E Λ༻ҙͯ͠ɺHA ⊗ HE ্ͷঢ়ଶϕΫτϧ |ψAE ⟩ = ∑ i √ pi |iA ⟩ ⊗ |iE ⟩ Λߟ͑·͢ɻ͜͜ʹɺ|iE ⟩ ͸ɺHE ͷ೚ҙͷਖ਼ن௚ަܥͱ͠·͢ɻ͜ͷ࣌ɺ|ψAE ⟩ Ͱه ड़͞ΕΔ७ਮঢ়ଶʹରͯ͠ɺܥ E ΛτϨʔεΞ΢τͯ͠ɺܥ A ʹର͢Δঢ়ଶີ౓ԋࢉࢠ
  8. 0.2 લఏ஌ࣝͷ੔ཧ 9 ρA Λܭࢉͯ͠Έ·͢ɻ ρA = TrE (|ψAE ⟩⟨ψAE

    |) = ∑ k ⟨kE |   ∑ i,j √ pi √ pj |iA ⟩ ⊗ |iE ⟩⟨jA | ⊗ ⟨jE |   |kE ⟩ = ∑ k ∑ i,j √ pi √ pj |iA ⟩⟨kE |iE ⟩⟨jA |⟨jE |kE ⟩ = ∑ k ∑ i,j √ pi √ pj |iA ⟩⟨jA |δik δjk = ∑ i pi |iA ⟩⟨iA | ࠷ޙͷ݁ՌΛݟΔͱɺ(7) ͱಉ͡ঢ়ଶີ౓ԋࢉࢠ͕ಘΒΕͨ͜ͱ͕Θ͔Γ·͢ɻ͜ͷΑ ͏ʹɺࠞ߹ঢ়ଶͷܥ A ʹରͯ͠ɺ؀ڥܥ E ΛՃ͑ͯɺ߹੒ܥ AE ʹ͓͚Δ७ਮঢ়ଶΛߏ ੒͢Δख๏Λܥͷ७ਮԽʢPurificationʣͱݺͼ·͢*2ɻ 0.2.5 ঢ়ଶมԽͱྔࢠνϟωϧ ֎෦ͷ؍ଌऀʹΑΔଌఆॲཧΛؚ·ͳ͍ɺྔࢠܥͷࣗવͳঢ়ଶมԽ͸ɺϢχλϦʔม׵ ʹΑͬͯද͞Ε·͢ɻͨͱ͑͹ɺώϧϕϧτۭؒ H ͷ্ͷঢ়ଶϕΫτϧ |ψ⟩ Ͱهड़͞Ε Δ७ਮঢ়ଶʹ͍ͭͯɺԿΒ͔ͷঢ়ଶมԽΛҾ͖ىͨ͜͠৔߹ɺมԽޙͷঢ়ଶ͸ɺϢχλ Ϧʔԋࢉࢠ U ∈ L(H) Λ༻͍ͯɺ |ψ′⟩ = U|ψ⟩ ͱද͞Ε·͢ɻ͜Ε͸ɺঢ়ଶີ౓ԋࢉࢠ ρ = |ψ⟩⟨ψ| Ͱදݱ͢Δͱɺ ρ′ = UρU† (8) ͱͳΓ·͢ɻΞϯαϯϒϧ {p(x), |ψx ⟩} ʹରԠ͢Δࠞ߹ঢ়ଶ ρ = ∑ x p(x)|ψx ⟩⟨ψx | ͷ৔߹͸ɺͦΕͧΕͷঢ়ଶ |ψx ⟩ ͕ಉҰͷϢχλϦʔԋࢉࢠ U Ͱม׵͞ΕΔ͜ͱ͔Βɺม Խޙͷঢ়ଶີ౓ԋࢉࢠ͸ɺ΍͸Γɺ(8) Ͱ༩͑ΒΕ·͢ɻ ࣍ʹɺ͜ͷߟ͑ํΛ߹੒ܥʹద༻ͯ͠Έ·͢ɻࠓɺ؍ଌର৅ͷܥ A ͸ঢ়ଶີ౓ԋࢉࢠ ρA ∈ L(HA ) Ͱද͞ΕΔঢ়ଶʹ͋Δͱ͠·͢ɻ͜Εʹɺ؀ڥܥ E ͷ७ਮঢ়ଶ |0E ⟩ ∈ HE *2 ౷ܭྗֶʹ͓͍ͯɺ౷ܭతͳΞϯαϯϒϧ͕ੜ͡ΔཁҼΛ͜ͷΑ͏ͳྔࢠྗֶతͳݱ৅ͱͯ͠هड़͠Α ͏ͱߟ͑Δݚڀऀ΋͍ΔΑ͏Ͱ͢ɻ
  9. 10 Λ݁߹͢Δͱɺঢ়ଶີ౓ԋࢉࢠ ρA ⊗ |0E ⟩⟨0E | ∈ L(HA ⊗

    HE ) Ͱهड़͞ΕΔঢ়ଶ͕ಘΒΕ·͢ɻ͜͜Ͱɺܥ AE શମʹҰఆͷૢ࡞ΛߦͬͯɺϢχλϦʔ ԋࢉࢠ UAE ∈ L(HA ⊗ HE ) Ͱද͞ΕΔม׵Λࢪͨ͠ͱ͠·͢ɻ͜ͷ࣌ɺܥ A ͷΈΛ؍ ଌ͢ΔΞϦε͔Βݟͨ৔߹ɺܥ A ͷঢ়ଶ͸ͲͷΑ͏ʹมԽ͢ΔͰ͠ΐ͏͔ʁ ม׵ޙͷܥ AE શମͷঢ়ଶ͸ɺUAE (ρA ⊗ |0E ⟩⟨0E |)U† AE ʹͳΓ·͕͢ɺΞϦε͸ܥ E Λ؍ଌ͢Δ͜ͱ͕Ͱ͖ͳ͍ͨΊɺܥ E ΛτϨʔεΞ΢τͨ͠΋ͷ͕ɺΞϦε͔Βݟͨܥ A ͷঢ়ଶ ρ′ A ʹͳΓ·͢ɻ͜Ε͸ɺ࣍ͷΑ͏ʹ·ͱΊΔ͜ͱ͕Ͱ͖·͢ɻ ρ′ A = TrE { UAE (ρA ⊗ |0E ⟩⟨0E |)U† AE } = ∑ i ⟨iE |UAE |0E ⟩ρA ⟨0E |U† AE |iE ⟩ = ∑ Ki ρA K† i ͜͜ʹɺKi ͸ɺKi = ⟨iE |UAE |0E ⟩ ∈ L(HA ) Ͱఆٛ͞ΕΔԋࢉࢠͰɺ࣍ͷ׬શܥͷ৚ ݅Λຬͨ͠·͢ɻ ∑ i K† i Ki = ∑ i ⟨0E |U† AE |iE ⟩⟨iE |UAE |0E ⟩ = ⟨0E |U† AE UAE |0E ⟩ = I ྔࢠ৘ใཧ࿦Ͱ͸ɺ͜ͷߟ͑ํΛΑΓҰൠԽͯ͠ɺ ∑ i K† i Ki = I Λຬͨ͢೚ҙͷԋࢉࢠͷ૊ {Ki } Λ༻͍ͯɺ ρ′ = ∑ i Ki ρK† ͱද͞ΕΔঢ়ଶมԽΛҾ͖ى͜͢ʮ࢓૊ΈʯΛྔࢠνϟωϧͱݺͼ·͢ɻ͜ͷ৔߹ɺKi ͸ ҟͳΔώϧϕϧτۭؒɺͨͱ͑͹ɺHA ͱ HB ͷؒͷઢܗࣸ૾ L(HA , HB ) Ͱ΋ߏ͍· ͤΜɻ΋͏গ͠۩ମతʹݴ͏ͱɺΞϦε͕ॴ༗͢Δܥ A ͷྔࢠঢ়ଶ ρA ∈ L(HA ) ΛԿΒ ͔ͷํ๏ͰϘϒʹૹ෇ͨ͠ͱͯ͠ɺϘϒ͕ܥ B ͱͯ͠ड͚औΔྔࢠঢ়ଶΛ ρB ∈ L(HB ) ͱ͠·͢*3ɻ͜ͷ࣌ɺϘϒ͕ड͚औΔঢ়ଶ͸ૹ෇ʹ༻͍ͨํ๏ʹΑͬͯมΘΓ·͕͢ɺ͜ *3 ͜͜Ͱݴ͏ʮૹ෇ʯ͸ɺ෺ཧతʹҠૹ͢Δͱ͍͏͚ͩͰ͸ͳ͘ɺྔࢠྗֶΛ༻͍ͨ৴߸ॲཧʹΑͬͯɺΞ Ϧεͷखݩʹ͋Δྔࢠঢ়ଶ ρA ʹج͍ͮͯɺϘϒͷखݩʹ৽͍͠ྔࢠঢ়ଶ ρB Λߏ੒͢ΔΑ͏ͳ৔߹΋ ؚΈ·͢ɻ
  10. 0.2 લఏ஌ࣝͷ੔ཧ 11 ͷૹ෇ϓϩηεΛ L(HA , HB ) ʹଐ͢Δԋࢉࢠͷ૊ {Ki

    } Λ༻͍ͯɺ ρB = ∑ i Ki ρA K† ͱද͢΋ͷͱߟ͍͑ͯͩ͘͞ɻ͜ͷΑ͏ʹͯ͠ྔࢠνϟωϧΛఆٛ͢Δԋࢉࢠͷ૊ {Ki } Λ Klaus ԋࢉࢠͱݺͼ·͢ɻ ·ͨɺ೚ҙͷ Klaus ԋࢉࢠ Ki ∈ L(HA , HB ) ͷ૊͕༩͑ΒΕͨ࣌ʹɺ͜ΕʹରԠ͢Δ ෺ཧతͳૢ࡞Λ؀ڥܥ E Λ༻͍ͯ࠶ߏ੒͢Δ͜ͱ͕Ͱ͖·͢ɻ۩ମతʹ͸ɺ U = ∑ i Ki ⊗ |iE ⟩ ∈ L(HA , HBE ) Ͱఆٛ͞ΕΔઢܗԋࢉࢠΛߟ͑Δͱɺ͜Ε͸ɺ࣍ͷੑ࣭Λຬͨ͠·͢ɻ U†U = ( ∑ i K† i ⊗ ⟨iE | )   ∑ j Kj ⊗ |jE ⟩   = ∑ i,j K† i Kj δij = ∑ i K† i Ki = I ͜ͷ৚݅Λຬͨ͢ԋࢉࢠΛҰൠʹɺΞΠιϝτϦʔԋࢉࢠͱݺͼ·͢ɻ͜Ε͸ɺϢχλ ϦʔԋࢉࢠΛҟͳΔώϧϕϧτۭؒͷؒͷઢܗࣸ૾ʹ֦ுͨ͠΋ͷͰɺࠓͷ৔߹ɺU ͸ɺ ܥ A ͔Βܥ BE ΁ͷࣗવͳঢ়ଶมԽΛද͠·͢ɻͦ͜Ͱɺঢ়ଶີ౓ԋࢉࢠ ρA Ͱද͞Ε Δܥ A ͷঢ়ଶΛ্هͷΞΠιϝτϦʔԋࢉࢠͰม׵ͨ͠ޙʹɺܥ E ΛτϨʔεΞ΢τ͠ ͯɺܥ A ͔Βܥ B ΁ͷঢ়ଶมԽΛٻΊͯΈ·͢ɻ ρB = TrE (UρA U†) = TrE    ∑ i,j ( Ki ⊗ |iE ⟩ ) ρA ( K† j ⊗ ⟨jE | )    = ∑ i,j Ki ρA K† j δij = ∑ i Ki ρA K† i ͜ͷ݁Ռ͸ɺKlaus ԋࢉࢠ Ki Λ༻͍ͨྔࢠνϟωϧʹΑΔม׵ͱҰக͍ͯ͠·͢ɻ͜ ͷΑ͏ʹɺ೚ҙͷྔࢠνϟωϧ͸ɺ؀ڥܥ E ΛؚΉࣗવͳঢ়ଶมԽͱ࣮ͯ͠૷͢Δ͜ͱ ͕Ͱ͖ΔͷͰ͢ɻ
  11. 12 0.3 ྔࢠΤϯτϩϐʔ ֬཰ม਺ X ͕཭ࢄత֬཰෼෍ p(x) ʹै͏࣌ɺ֬཰ม਺ X ͷݹయΤϯτϩϐʔʢγϟ

    ϊϯΤϯτϩϐʔʣ͸ɺ H(X) = − ∑ x p(x) log p(x) Ͱఆٛ͞Εͯɺ֬཰෼෍ p(x) ʹΑΒͣ H(X) ≥ 0 Λຬͨ͠·͢ɻ·ͨɺH(X) = 0 ͕ ੒ཱ͢Δͷ͸ɺಛఆͷ x ʹ͍ͭͯͷΈ p(x) = 1 ͱͳΔ৔߹ʹݶΓ·͢ɻ͜Εͱಉ༷ʹɺ Ξϯαϯϒϧ {p(x), |ψx ⟩} ͔ΒͳΔࠞ߹ঢ়ଶͷྔࢠܥʹ͍ͭͯɺ౷ܭతͳෆ֬ఆੑΛද ͢ྔͱͯ͠ɺྔࢠΤϯτϩϐʔʢϊΠϚϯΤϯτϩϐʔʣΛఆٛ͠·͢ɻͨͩ͠ɺྔࢠܥ ͷ৔߹͸ɺ ʮ0.2.1 ঢ়ଶີ౓ԋࢉࢠʹΑΔྔࢠঢ়ଶͷهड़ʯͰݟͨΑ͏ʹɺෳ਺ͷΞϯαϯ ϒϧ͕ಉҰͷঢ়ଶີ౓ԋࢉࢠʹରԠ͢Δ͜ͱ͔Βɺਖ਼ن௚ަجఈͰల։ͨ͠ࡍͷ෼෍Λ༻ ͍·͢ɻ۩ମతʹ͸ɺঢ়ଶີ౓ԋࢉࢠ ρ = ∑ x p(x)|ψx ⟩⟨ψx | ΛεϖΫτϧ෼ղͯ͠ɺ ρ = ∑ i pi |i⟩⟨i| (9) ͱදͨ͠ࡍͷݻ༗஋ pi Λ༻͍ͯɺ͜ͷܥ A ͷྔࢠΤϯτϩϐʔʢQuantum entropyʣΛ ࣍Ͱఆٛ͠·͢ɻ H(A) = − ∑ i pi log pi (10) લड़ͷΑ͏ʹɺpi ͸֬཰෼෍ͱͯ͠ͷ৚݅Λຬ͍ͨͯ͠ΔͷͰɺݹయΤϯτϩϐʔͱಉ ༷ʹɺ೚ҙͷঢ়ଶີ౓ԋࢉࢠ ρ ʹରͯ͠ H(A) ≥ 0 ͕੒ཱ͠·͢ɻͦͯ͠ɺ͜ͷఆ͔ٛ Β໌Β͔ͳΑ͏ʹɺ७ਮঢ়ଶͷྔࢠΤϯτϩϐʔ͸ 0 ʹͳΓ·͢ɻ ·ͨɺ(9) ͷঢ়ଶີ౓ԋࢉࢠ ρ ʹ͍ͭͯɺͦͷର਺ log ρ Λ log ρ = ∑ i log pi |i⟩⟨i| Ͱఆٛ͢Δͱɺ(10) ͷఆٛ͸࣍ͷΑ͏ʹॻ͖௚͢͜ͱ͕Ͱ͖·͢ɻ H(A) = −Tr (ρ log ρ) ͪ͜Β͸ɺεϖΫτϧ෼ղͷදهʹґଘ͠ͳ͍ͱ͍͏ར఺͕͋Γ·͕͢ɺ࣮ࡍͷܭࢉΛ ߦ͏ࡍ͸ɺ(10) ͷදࣜͷํ͕ศརͳ͜ͱ΋͋Γ·͢ɻͳ͓ɺҰൠʹɺ೚ҙͷ 1 ม਺ؔ਺ f
  12. 0.3 ྔࢠΤϯτϩϐʔ 13 ͱΤϧϛʔτԋࢉࢠ H ʹ͍ͭͯɺf(H) ͷ஋͸ɺH ͷεϖΫτϧ෼ղ H =

    ∑ i xi |i⟩⟨i| Λ༻͍ͯɺ f(H) = ∑ i f(xi )|i⟩⟨i| Ͱఆٛ͞Ε·͢ɻ ଓ͍ͯɺ߹੒ܥͷྔࢠΤϯτϩϐʔʹ͍ͭͯߟ͑·͢ɻ߹੒ܥ AB ͷঢ়ଶ͕ঢ়ଶີ౓ ԋࢉࢠ ρAB Ͱද͞ΕΔͱ͖ɺܥ AB ͷྔࢠΤϯτϩϐʔ͸ɺ H(AB) = −Tr (ρAB log ρAB ) Ͱ༩͑ΒΕ·͢ɻ͞Βʹɺ෦෼ܥ AɺB ͷঢ়ଶີ౓ԋࢉࢠ͸ɺͦΕͧΕɺ ρA = TrB ρAB ρB = TrA ρAB Ͱ༩͑ΒΕͯɺܥ Aɺܥ B ͷྔࢠΤϯτϩϐʔ͸ɺ H(A) = −Tr (ρA log ρA ) H(B) = −Tr (ρB log ρB ) Ͱܭࢉ͞Ε·͢ɻݹయΤϯτϩϐʔͷੈքͰݴ͏ͱɺ͜Ε͸ɺ2 ͭͷ֬཰ม਺ X, Y ʹର ͢Δಉ࣌෼෍ p(x, y) ͷΤϯτϩϐʔ H(X, Y ) ͱɺͦΕͧΕͷ֬཰ม਺ʹର͢Δपล෼ ෍ p(x), p(y) ͷΤϯτϩϐʔ H(X), H(Y ) Λߟ͍͑ͯΔ͜ͱʹ͋ͨΓ·͢ɻ ͔͠͠ͳ͕ΒɺݹయΤϯτϩϐʔͱͷܾఆతͳҧ͍ͱͯ͠ɺ෦෼ܥͷྔࢠΤϯτϩϐʔ ͸ɺܥશମͷྔࢠΤϯτϩϐʔΑΓ΋খ͍͞ͱ͸ݶΒͳ͍ɺͱ͍͏఺͕͋Γ·͢ɻͨͱ͑ ͹ɺݹయΤϯτϩϐʔͷ৔߹ɺ৚݅෇͖Τϯτϩϐʔ H(Y | X) = H(X, Y ) − H(X) ʹ ͍ͭͯɺ H(Y | X) ≥ 0 ͕੒Γཱͭ͜ͱ͔Βɺৗʹɺ H(X) ≤ H(X, Y ) ͕੒Γཱͪ·͢ɻͭ·Γɺपล෼෍Λͱͬͯʮ؍ଌൣғʯΛݶఆ͢Ε͹ɺ౷ܭతͳෆ֬ఆ ੑ͸ඞͣݮগ͠·͢ɻҰํɺྔࢠܥͷ৔߹ɺ͜ͷΑ͏ͳؔ܎͸ඞͣ͠΋੒Γཱͪ·ͤΜɻ ͨͱ͑͹ɺ߹੒ܥ AB ͕७ਮঢ়ଶͰ͋Ε͹ɺH(AB) = 0 ͕੒Γཱͪ·͕͢ɺ෦෼ܥ Aɺ
  13. 14 B ͸Ұൠʹ͸ࠞ߹ঢ়ଶͱͳΔͷͰɺH(A) > 0ɺ΋͘͠͸ɺH(B) > 0 ͱͳΔՄೳੑ͕͋ Γ·͢ɻͭ·Γɺྔࢠܥʹ͓͍ͯ͸ɺ؍ଌൣғΛݶఆ͢Δ͜ͱͰɺ౷ܭతͳෆ֬ఆੑ͕૿ Ճ͢ΔՄೳੑ͕͋ΔͷͰ͢ɻ

    ͞Βʹɺܥ AB ͕७ਮঢ়ଶͷ৔߹ɺ෦෼ܥ AɺB ͷྔࢠΤϯτϩϐʔ͕Ұக͢Δͱ͍ ͏ɺஶ͍͠ੑ࣭͕͋Γ·͢ɻ͜Ε͸ɺ࣍ͷఆཧͷূ໌ʹ͋ΔΑ͏ʹɺ߹੒ܥͷঢ়ଶϕΫτ ϧʹγϡϛοτ෼ղΛద༻͢Δ͜ͱͰ༰қʹࣔ͢͜ͱ͕Ͱ͖·͢ɻ ఆཧ 1 ߹੒ܥ AB ͕७ਮঢ়ଶͷ࣌ɺܥ ABɺ͓Αͼɺ෦෼ܥ AɺB ͷྔࢠΤϯτϩϐʔ ʹ͍ͭͯɺ࣍ͷؔ܎͕੒Γཱͭɻ H(AB) = 0, H(A) = H(B) [ূ໌] ܥ AB ͸७ਮঢ়ଶͰ͋Δ͜ͱ͔ΒɺH(AB) = 0 ͸ࣗ໌ʹ੒Γཱͭɻ࣍ʹɺܥ AB ͷঢ়ଶϕΫτϧ |ψAB ⟩ Λγϡϛοτ෼ղͨ͠΋ͷΛ |ψAB ⟩ = ∑ i √ pi |iA ⟩ ⊗ |iB ⟩ ͱ͢Δɻ͜ͷ࣌ɺܥ A ͷঢ়ଶີ౓ԋࢉࢠΛܭࢉ͢Δͱɺ࣍ͷ݁Ռ͕ಘΒΕΔɻ ρA = TrB (|ψAB ⟩⟨ψAB |) = TrB ( ∑ i,j √ pi √ pj |iA ⟩⟨jA | ⊗ |iB ⟩⟨jB |) = ∑ k ∑ i,j √ pi √ pj |iA ⟩⟨jA |⟨kB |iB ⟩⟨jB |kB ⟩ = ∑ k ∑ i,j √ pi √ pj |iA ⟩⟨jA |δik δjk = ∑ i pi |iA ⟩⟨iA | ಉ༷ʹɺܥ B ͷঢ়ଶີ౓ԋࢉࢠΛܭࢉ͢Δͱɺ࣍ͷ݁Ռ͕ಘΒΕΔɻ ρB = ∑ i pi |iB ⟩⟨iB | ͕ͨͬͯ͠ɺܥ A ͱܥ B ͸ɺಉҰͷ֬཰෼෍ pi Λݻ༗஋ͱ͢ΔεϖΫτϧ෼ղΛ࣋ͬ ͓ͯΓɺ͜ΕΑΓɺH(A) = H(B) ͕੒Γཱͭɻ ˙ ಉ༷ͷٞ࿦͸ɺ3 ͭҎ্ͷܥ͔ΒͳΔ߹੒ܥʹ͍ͭͯ΋੒Γཱͪ·͢ɻͨͱ͑͹ɺ߹੒ ܥ ABC ͕७ਮঢ়ଶͰ͋Ε͹ɺܥ A ͱܥ BCɺ΋͘͠͸ɺܥ B ͱܥ AC ͳͲɺෳ਺ͷ૊ Έ߹ΘͤͰ 2 ͭͷܥʹ෼ׂ͢Δ͜ͱ͕Ͱ͖·͢ɻ͍ͣΕͷ৔߹΋ɺ෼ׂͨ͠ 2 ͭͷܥͷΤ
  14. 0.3 ྔࢠΤϯτϩϐʔ 15 ϯτϩϐʔ͸Ұகͯ͠ɺ࣍ͷؔ܎͕ͦΕͧΕ੒Γཱͪ·͢ɻ H(A) = H(BC) H(B) = H(AC)

    H(C) = H(AB) ଓ͍ͯɺྔࢠܥʹ͓͚Δɺ ʮಠཱͳ֬཰ม਺ʯʹ૬౰͢Δ֓೦Λಋೖ͠·͢ɻҰൠʹɺ2 ͭͷ֬཰ม਺ X, Y ͕ಠཱͰ͋Δ৔߹ɺX ͱ Y ͷಉ࣌෼෍ p(x, y) ʹ͍ͭͯ p(x, y) = p(x)p(y) ͕੒Γཱͪɺ͜ͷ݁Ռɺಉ࣌෼෍ͷΤϯτϩϐʔ͸ɺͦΕͧΕͷपล෼෍ͷΤϯτϩϐʔ ͷ࿨ʹͳΓ·ͨ͠ɻ H(X, Y ) = H(X) + H(Y ) ྔࢠܥʹ͓͍ͯɺ͜ΕʹରԠ͢Δͷ͕࣍ͷఆཧʹͳΓ·͢ɻ ఆཧ 2 ߹੒ܥ AB ͷঢ়ଶີ౓ԋࢉࢠ ρAB ͕ɺܥ A ͱܥ B ͷঢ়ଶີ౓ԋࢉࢠ ρA , ρB ͷςϯιϧੵͰ༩͑ΒΕΔɺ͢ͳΘͪɺ ρAB = ρA ⊗ ρB ͕੒Γཱͭ࣌ɺ H(AB) = H(A) + H(B) ͕੒ཱ͢Δɻ [ূ໌] ܥ A ͱܥ B ͷঢ়ଶີ౓ԋࢉࢠΛεϖΫτϧ෼ղͯ͠ɺ ρA = ∑ i pi |iA ⟩⟨iA | ρB = ∑ i qi |iB ⟩⟨iB | ͱද͢ͱɺܥ AB ͷঢ়ଶີ౓ԋࢉࢠ͸ɺ ρAB = ∑ i,j pi qj |iA ⟩⟨iA | ⊗ |jB ⟩⟨jB | Ͱ༩͑ΒΕΔɻ͜Ε͸ɺਖ਼ن௚ަجఈ |iA ⟩ ⊗ |jB ⟩ Λ༻͍ͨ ρAB ͷεϖΫτϧ෼ղΛ༩
  15. 16 ͍͑ͯΔͷͰɺ͜ΕΑΓɺܥ AB ͷΤϯτϩϐʔ͸ɺ࣍ͷΑ͏ʹܭࢉ͞ΕΔɻ H(AB) = − ∑ i,j pi

    qj log(pi qj ) = − ∑ i,j pi qj log pi − ∑ i,j pi qj log qj = − ∑ i pi log pi − ∑ j qj log qj = H(A) + H(B) ˙ ޙ΄Ͳɺ ʮ0.7 ͦͷଞͷੑ࣭ʯʹ͓͍ͯɺྔࢠΤϯτϩϐʔͷ Concavity Λূ໌͠·͢ ͕ɺͦͷࡍʹɺ ʮݹయʕྔࢠܥʯͱݺ͹ΕΔಛघͳ߹੒ܥΛར༻͠·͢ɻ͜͜Ͱ͸ɺͦͷ४ උͱͯ͠ɺݹయʕྔࢠܥʹ͍ͭͯઆ໌͓͖ͯ͠·͢ɻࠓɺܥ A ͷਖ਼ن௚ަجఈΛ |iA ⟩ ͱ ͯ͠ɺ७ਮঢ়ଶͷ૊ {|iA ⟩⟨iA |} Λ༻ҙ͠·͢ɻ͞Βʹɺ͜ΕʹରԠͯ͠ɺܥ B ʹ͓͚Δ ࠞ߹ঢ়ଶͷ૊ {ρBi } Λ༻ҙ͠·͢ɻͦͯ͠ɺ֬཰෼෍ pi ʹै͏֬཰ม਺ͷαϯϓϧΛऔ ಘͯ͠ɺͦͷ஋ʹԠͯ͡ɺࠞ߹ܥ AB ͷঢ়ଶ |iA ⟩⟨iA | ⊗ ρBi Λ༻ҙ͠·͢ɻ͜ͷΑ͏ʹ͠ ͯಘΒΕΔΞϯαϯϒϧ {pi , |iA ⟩⟨iA | ⊗ ρBi } ͸ɺ࣍ͷঢ়ଶີ౓ԋࢉࢠͰهड़͞Ε·͢ɻ ρAB = ∑ i pi |iA ⟩⟨iA | ⊗ ρBi ͜ͷΑ͏ͳঢ়ଶΛݹయʕྔࢠܥͱݺͼ·͢ɻ͜ͷ࣌ɺܥ A ͸ɺਖ਼ن௚ަجఈΛ༻͍ͨ ࣹӨଌఆʹΑΓɺܥͷঢ়ଶΛਖ਼֬ʹ൑ఆ͢Δ͜ͱ͕Ͱ͖·͢ɻͭ·Γɺ֬཰ม਺͔ΒಘΒ Εͨαϯϓϧͷ஋Λਖ਼֬ʹ஌Δ͜ͱ͕Ͱ͖ΔͷͰɺݹయతͳ֬཰෼෍ pi ͱಉ౳ͷ৘ใྔ Λ࣋ͪ·͢ɻ࣮ࡍɺܥ B ʹ͍ͭͯτϨʔεΞ΢τͯ͠ɺܥ A ͷঢ়ଶີ౓ԋࢉࢠΛٻΊΔ ͱɺTrB ρBi = 1 Λ༻͍ͯɺ ρA = ∑ i pi |iA ⟩⟨iA | (11) ͱͳΓ·͢ͷͰɺࣹӨԋࢉࢠ Pi = |iA ⟩⟨iA | ʹΑΔࣹӨଌఆͰܥͷঢ়ଶ͕൑ผͰ͖·͢ɻ ·ͨɺ(11) ͷදࣜΑΓɺܥ A ͷྔࢠΤϯτϩϐʔ͸ɺ֬཰෼෍ pi ͷݹయΤϯτϩϐʔ ʹҰக͢Δ͜ͱ͕Θ͔Γ·͢ɻ H(ρA ) = − ∑ i pi log pi Ұํɺܥ A ʹ͍ͭͯτϨʔεΞ΢τͯ͠ɺܥ B ͷঢ়ଶີ౓ԋࢉࢠΛٻΊΔͱɺ࣍ͷΑ
  16. 0.4 ྔࢠ૬ରΤϯτϩϐʔ 17 ͏ʹɺෳ਺ͷࠞ߹ঢ়ଶΛ͞Βʹࠞ߹ͨ͠ྔࢠܥ͕ಘΒΕ·͢ɻ ρB = ∑ i pi ρBi

    0.4 ྔࢠ૬ରΤϯτϩϐʔ ྔࢠΤϯτϩϐʔʹؔ࿈͢Δ֓೦ͱͯ͠ɺ͜ͷޙͷઅͰղઆ͢Δɺ৚݅෇͖ྔࢠΤϯτ ϩϐʔ΍ྔࢠ૬ޓ৘ใྔͳͲ͕͋Γ·͕͢ɺ͜ΕΒͷੑ࣭ͷଟ͘͸ɺྔࢠ૬ରΤϯτϩ ϐʔΛ༻͍ͯಋ͘͜ͱ͕Ͱ͖·͢ɻྔࢠ૬ରΤϯτϩϐʔ͸ɺݹయ৘ใཧ࿦ʹ͓͚Δ૬ର ΤϯτϩϐʔʢKL μΠόʔδΣϯεʣʹରԠ͢Δ΋ͷͰ͢ͷͰɺ·ͣ͸ɺKL μΠόʔ δΣϯεͷੑ࣭Λ֬ೝ͓͖ͯ͠·͢ɻ Ұൠʹɺ֬཰ม਺ X ʹର͢Δ 2 छྨͷ֬཰෼෍ p(x) ͱ q(x) ʹ͍ͭͯɺKL μΠόʔ δΣϯε͸࣍ࣜͰఆٛ͞Ε·͢ɻ D(p || q) = ∑ x p(x) log p(x) q(x) = ∑ x p(x) log p(x) − ∑ x p(x) log q(x) (12) ͜Ε͸ɺ೚ҙͷ p(x), q(x) ʹ͍ͭͯɺඇෛʢਖ਼ɺ·ͨ͸ɺ0ʣͷ஋ΛऔΓɺಛʹ 0 ʹͳ Δͷ͸ɺ2 ͭͷ֬཰෼෍͕Ұகͯ͠ɺp(x) = q(x) ͕੒Γཱͭ৔߹ʹݶΓ·͢ɻ D(p || q) ≥ 0 D(p || q) = 0 ⇔ p(x) = q(x) ͜ΕΒͷؔ܎͔ΒɺKL μΠόʔδΣϯε͸ɺ֬཰෼෍ p(x) ͱ q(x) ͷྨࣅੑΛଌΔࢦ ඪͱͳΓ·͢ɻ ྔࢠ૬ରΤϯτϩϐʔʢQuantum relative entropyʣ͸ɺ(12) ͷදࣜΛྔࢠܥʹ֦ு ͨ͠΋ͷͰ͢ɻώϧϕϧτۭؒ H ্ͷ 2 छྨͷঢ়ଶີ౓ԋࢉࢠ ρ ͱ σ ʹରͯ͠ɺྔࢠ ૬ରΤϯτϩϐʔ D(ρ || σ) ͸ɺ࣍ࣜͰఆٛ͞Ε·͢ɻ D(ρ || σ) = Tr(ρ log ρ) − Tr(ρ log σ) ͦͯ͠ɺྔࢠ૬ରΤϯτϩϐʔ΋·ͨɺρ ͱ σ ͷྨࣅੑΛଌΔࢦඪͱͳ͓ͬͯΓɺ࣍ͷ ఆཧ͕੒Γཱͪ·͢ɻ
  17. 18 ఆཧ 3 ೚ҙͷঢ়ଶີ౓ ρ, σ ʹରͯ͠ɺྔࢠ૬ରΤϯτϩϐʔ͸ඇෛ஋ΛͱΔɻ D(ρ || σ)

    ≥ 0 ·ͨɺྔࢠ૬ରΤϯτϩϐʔ͕ 0 ʹͳΔͷ͸ɺρ = σ ͷ৔߹ʹݶΔɻ D(ρ || σ) = 0 ⇔ ρ = σ [ূ໌] ρ ͱ σ Λ࣍ͷΑ͏ʹεϖΫτϧ෼ղ͢Δɻ ρ = ∑ i pi |i⟩⟨i| σ = ∑ j qj |j⟩⟨j| ͜͜Ͱɺ{|i⟩} ͱ {|j⟩} ͸ɺҰൠʹ͸ҟͳΔਖ਼ن௚ަجఈͰ͋ΓɺҎ߱͸ɺఴࣈ i, j Ͱ ۠ผ͢Δ΋ͷͱ͢Δɻ͜ͷ࣌ɺྔࢠ૬ରΤϯτϩϐʔ͸ɺ࣍ͷΑ͏ʹܭࢉ͞ΕΔɻ D(ρ || σ) = ∑ i pi log pi − Tr    ∑ i,j pi |i⟩⟨i|(log qj )|j⟩⟨j|    = ∑ i pi log pi − ∑ i,j pi (log qj )⟨i | j⟩⟨j | i⟩ = ∑ i pi  log pi − ∑ j Pij log qj   (13) ͜͜ʹɺ Pij = ⟨i | j⟩⟨j | i⟩ = |⟨i | j⟩|2 (14) Ͱ͋ΓɺఆٛΑΓɺ࣍ͷੑ࣭Λຬͨ͢ɻ Pij ≥ 0 (15) ∑ i Pij = 1 (16) ∑ j Pij = 1 (17) ͜͜Ͱɺ೚ҙͷ i ʹ͍ͭͯɺ(17) ͕੒Γཱͭ͜ͱ͔Βɺର਺ؔ਺্͕ʹತͰ͋Δ͜ͱΛ ༻͍ͯɺJensen ͷෆ౳ࣜ ∑ j Pij log qj ≤ log   ∑ j Pij qj   (18)
  18. 0.4 ྔࢠ૬ରΤϯτϩϐʔ 19 ͕੒Γཱͭɻ͞Βʹɺ ri = ∑ j Pij qj

    (19) ͱஔ͘ͱɺ(15)(16) ΑΓɺ ri ≥ 0 ͓Αͼ ∑ i ri = ∑ i,j Pij qj = ∑ j qj = 1 ͕੒ΓཱͭͷͰɺri ͸֬཰෼෍ͷ৚݅Λຬ͍ͨͯ͠Δɻ ͜͜Ͱɺ(13) ʹ (18)(19) Λ୅ೖ͢Δͱɺ͕࣍ಘΒΕΔɻ D(ρ || σ) ≥ ∑ i pi (log pi − log ri ) ͜ͷ࠷ޙͷදࣜ͸ɺ֬཰෼෍ pi ͱ ri ͷݹయ૬ରΤϯτϩϐʔ D(p || r) ʹҰக͓ͯ͠ Γɺݹయ૬ରΤϯτϩϐʔͷੑ࣭ΑΓɺ D(p || r) = ∑ i pi (log pi − log ri ) ≥ 0 (20) ͕੒Γཱͭɻ͜ΕͰɺ D(ρ || σ) ≥ 0 ͕ࣔ͞Εͨɻ ͜͜Ͱɺ౳߸͕੒ཱ͢Δͷ͸ɺ(18) ͱ (20) ͷͦΕͧΕͰ౳߸͕੒ཱ͢Δ৔߹ʹҰக͢ Δɻ·ͣɺ(18) ͷ౳߸͕੒ཱ͢Δͷ͸ɺ೚ҙͷ i ʹ͍ͭͯɺ͋Δͻͱͭͷ j ʹ͍ͭͯͷ ΈɺPij = 1 Ͱ͋Γɺͦͷଞͷ j ʹ͍ͭͯ Pij = 0 ͱͳΔ৔߹Ͱ͋ΔɻPij ͷఆٛ (14) ʹ ໭Δͱɺ͜Ε͸ɺ{|i⟩} ͱ {|j⟩} ͕ू߹ͱͯ͠Ұக͢Δ͜ͱΛҙຯ͓ͯ͠Γɺqi ͷॱংΛద ౰ʹೖΕସ͑ͯɺॱংΛؚΊͯҰக͢Δͱͯ͠΋ҰൠੑΛࣦΘͳ͍ɻ͜ͷ৔߹ɺPij = δij ͕੒Γཱͭɻ࣍ʹɺ(20) ͷ౳߸͕੒ཱ͢Δͷ͸ɺ֬཰෼෍ pi ͱ ri ͕Ұக͢Δ࣌Ͱ͋Δ ͕ɺ͜Ε͸ɺࠓͷ৔߹ɺPij = δij ͱ͍͏৚͔݅Βɺpi = qi Λҙຯ͓ͯ͠Γɺ͜ΕΑΓɺ ρ = σ ͕ಘΒΕΔɻ ˙ ྔࢠ૬ରΤϯτϩϐʔ͕ඇෛͰ͋Δͱ͍͏ෆ౳ࣜ͸ɺKlein ͷෆ౳ࣜͱ΋ݺ͹Ε·͢ɻ ͜ͷޙͷઅͰݟΔΑ͏ʹɺKlein ͷෆ౳ࣜ͸ɺྔࢠΤϯτϩϐʔʹؔ࿈͢Δ͞·͟·ͳෆ ౳ࣜͷূ໌ʹར༻͞Ε·͢ɻͨͱ͑͹ɺ߹੒ܥ AB ͷঢ়ଶີ౓ԋࢉࢠ ρAB ͔ΒɺτϨʔ
  19. 20 εΞ΢τʹΑΓɺܥ AɺB ͦΕͧΕͷঢ়ଶີ౓ԋࢉࢠΛٻΊ·͢ɻ ρA = TrB ρAB ρB =

    TrA ρAB ࣍ʹɺρAB ͱςϯιϧੵ ρA ⊗ ρB ͷྔࢠ૬ରΤϯτϩϐʔ D(ρAB || ρA ⊗ ρB ) Λ ܭࢉ͢Δͱɺܥ ABɺܥ Aɺܥ B ͦΕͧΕͷྔࢠΤϯτϩϐʔ͕ࣗવʹݱΕͯɺ࣍ͷ Subadditivity ͱݺ͹ΕΔؔ܎͕ࣔ͞Ε·͢ɻ ఆཧ 4 ߹੒ܥ AB ͱͦͷ෦෼ܥ AɺB ͷྔࢠΤϯτϩϐʔʹ͍ͭͯɺ࣍ͷෆ౳͕ࣜ੒ Γཱͭɻ H(AB) ≤ H(A) + H(B) ౳߸͕੒ཱ͢Δͷ͸ɺܥ AB ͷঢ়ଶີ౓ԋࢉࢠ ρAB ͕ɺܥ AɺB ͷঢ়ଶີ౓ԋࢉࢠ ρA , ρB ͷςϯιϧੵʹҰக͢Δ৔߹ʹݶΔɻ H(AB) = H(A) + H(B) ⇔ ρAB = ρA ⊗ ρB [ূ໌] ͸͡Ίʹɺ࣍ͷؔ܎Λࣔ͢ɻ log(ρA ⊗ ρB ) = (log ρA ) ⊗ IB + IA ⊗ (log ρB ) (21) ࠓɺρA ͱ ρB ͷͦΕͧΕΛεϖΫτϧ෼ղͨ͠΋ͷΛ ρA = ∑ i pi |iA ⟩⟨iA | (22) ρB = ∑ j qj |jB ⟩⟨jB | ͱ͢ΔͱɺρA ⊗ ρB ͸࣍ͷΑ͏ʹද͞ΕΔɻ ρA ⊗ ρB = ∑ i,j pi qj |iA ⟩⟨iA | ⊗ |jB ⟩⟨jB | ͜Ε͸ɺρA ⊗ ρB Λਖ਼ن௚ަجఈ |iA ⟩ ⊗ |jB ⟩ Λ༻͍ͯεϖΫτϧ෼ղͨ͠΋ͷʹଞͳ Βͣɺ͜ΕΑΓɺ࣍ͷܭࢉ͕੒Γཱͭɻ log(ρA ⊗ ρB ) = ∑ i,j log(pi qj )|iA ⟩⟨iA | ⊗ |jB ⟩⟨jB | = ∑ i,j log pi |iA ⟩⟨iA | ⊗ |jB ⟩⟨jB | + ∑ i,j log pi |iA ⟩⟨iA | ⊗ |jB ⟩⟨jB | = ∑ i log pi |iA ⟩⟨iA | ⊗ IB + IA ⊗ ∑ j log qj |jB ⟩⟨jB | = (log ρA ) ⊗ IB + IA ⊗ (log ρB )
  20. 0.4 ྔࢠ૬ରΤϯτϩϐʔ 21 ͜ΕͰ (21) ͕ࣔ͞Εͨɻ͜ΕΛ༻͍ΔͱɺρAB ͱ ρA ⊗ ρB

    ͷྔࢠ૬ରΤϯτϩϐʔ ͸ɺ࣍ͷΑ͏ʹܭࢉ͞ΕΔɻ D(ρAB || ρA ⊗ ρB ) = Tr(ρAB log ρAB ) − Tr {ρAB log(ρA ⊗ ρB )} = −H(AB) − Tr {ρAB (log ρA ) ⊗ IB } −Tr {ρAB IA ⊗ (log ρB )} (23) ࠷ޙͷදࣜͷୈ 2 ߲ͱୈ 3 ߲͸ɺ࣍ͷΑ͏ʹॻ͖௚͢͜ͱ͕Ͱ͖Δɻ −Tr {ρAB (log ρA ) ⊗ IB } = H(A) (24) −Tr {ρAB IA ⊗ (log ρB )} = H(B) (25) ࣮ࡍɺρAB Λਖ਼ن௚ަجఈ |iA ⟩ ⊗ |jB ⟩ Λ༻͍ͯεϖΫτϧ෼ղͨ͠΋ͷΛ ρAB = ∑ i,j rij |iA ⟩⟨iA | ⊗ |jB ⟩⟨jB | ͱ͢Δͱɺ ρA = TrB ρAB = ∑ j ( ∑ i rij ) |iA ⟩⟨iA | ͕ಘΒΕͯɺ͜ΕΛ (22) ͱൺֱ͢Δͱɺ ∑ j rij = pi ͱͳΔ͜ͱ͕Θ͔Δɻ͜ΕΑΓɺ࣍ͷܭࢉ͕੒Γཱͭɻ −Tr {ρAB (log ρA ) ⊗ IB } = −Tr    ∑ i,j rij |iA ⟩⟨iA | ⊗ |jB ⟩⟨jB | ∑ i′ (log pi′ )|i′ A ⟩⟨i′ A | ⊗ IB    = −Tr    ∑ i,j rij (log pi )|iA ⟩⟨iA | ⊗ |jB ⟩⟨jB |    = − ∑ i,j rij log pi = − ∑ i pi log pi = H(A) ͜ΕͰ (24) ͕ࣔ͞Εͨɻ(25) ʹ͍ͭͯ΋ಉ༷Ͱ͋Δɻ(23) ʹ (24)(25) Λ୅ೖ͢Δͱɺ ࠷ऴతʹ࣍ͷؔ܎͕ಘΒΕΔɻ D(ρAB || ρA ⊗ ρB ) = H(A) + H(B) − H(AB) (26)
  21. 22 ͜Εʹ Klein ͷෆ౳ࣜΛద༻͢Δͱɺఆཧͷओு಺༰͕ಘΒΕΔɻ ˙ ্هͷূ໌ͷ࠷ޙʹಘΒΕͨྔ H(A) + H(B) −

    H(AB) ͸ɺ ʮ0.6 ྔࢠ૬ޓ৘ใྔʯͰ આ໌͢Δɺྔࢠ૬ޓ৘ใྔ I(A ; B) ʹҰக͍ͯ͠·͢ɻͭ·ΓɺSubaditivity ͸ɺྔࢠ ૬ޓ৘ใྔ͕ඇෛͰ͋Δ͜ͱͱಉ஋ʹͳΓ·͢ɻ ͞Βʹ΋͏ҰͭɺKlein ͷෆ౳ࣜͷԠ༻ྫͱͯ͠ɺࣹӨଌఆʹΑͬͯྔࢠΤϯτϩϐʔ ͕૿Ճ͢Δͱ͍͏ࣄ࣮Λࣔ͠·͢ɻ·ͣɺྔࢠΤϯτϩϐʔ͸ɺ౷ܭతͳෆ֬ఆੑΛଌΔ ྔͰ͢ͷͰɺ७ਮঢ়ଶʹରͯ͠ɺ؍ଌʹΑͬͯ౷ܭతͳෆ֬ఆੑΛಋೖ͢ΔͱɺྔࢠΤϯ τϩϐʔ͸૿Ճ͠·͢ɻͨͱ͑͹ɺ७ਮঢ়ଶ ρ = |ψ⟩⟨ψ| ʹࣹӨଌఆ Pi Λࢪ͢ͱɺଌఆ ݁ՌΛ؍ଌ͠ͳ͍৔߹ɺଌఆޙͷঢ়ଶ͸ɺ࣍ͷࠞ߹ঢ়ଶͱͳΓ·͢ɻ ρ′ = ∑ i Pi ρPi ७ਮঢ়ଶͷྔࢠΤϯτϩϐʔ͸ 0 Ͱ͋Δ͜ͱ͔Βɺ͜ͷ৔߹͸ɺࣗ໌ʹ H(ρ′) ≥ H(ρ) (27) ͕੒Γཱͪ·͢ɻҰൠʹɺ७ਮঢ়ଶʹݶఆ͠ͳ͍ɺ೚ҙͷঢ়ଶ ρ ʹ͍ͭͯɺ(27) ͕੒Γ ཱͪ·͢ɻ ఆཧ 5 Pi ͸ࣹӨଌఆԋࢉࢠͷ׬શܥͰ͋Γɺ࣍ͷؔ܎Λຬͨ͢΋ͷͱ͢Δɻ P2 i = Pi , ∑ i Pi = 1 ͜ͷ࣌ɺ೚ҙͷঢ়ଶີ౓ԋࢉࢠ ρ ʹରͯ͠ɺ ρ′ = ∑ i Pi ρPi ͱͯ͠ɺ H(ρ′) ≥ H(ρ) ͕੒Γཱͭɻ [ূ໌] ·ͣɺP2 i = 1 ΑΓɺ ρ′Pi = Pi ρ′ = ρ′ ͕੒Γཱͪɺρ′ ͱ Pi ͸Մ׵ʹͳΔɻ͜ΕΑΓɺH(ρ′) = −Tr (ρ′ log ρ′) Λ࣍ͷΑ͏ʹม
  22. 0.5 ৚݅෇͖ྔࢠΤϯτϩϐʔ 23 ܗ͢Δ͜ͱ͕Ͱ͖Δɻ Tr (ρ′ log ρ′) = Tr

    ( ∑ i Pi ρPi log ρ′ ) = Tr ( ∑ i Pi ρ(log ρ′)Pi ) = Tr ( ∑ i P2 i ρ log ρ′ ) = Tr ( ∑ i Pi ρ log ρ′ ) = Tr (ρ log ρ′) 2 ͭ໨ͷ౳߸Ͱ͸ɺρ′ ͱ Pi ͷՄ׵ੑΛ༻͍͓ͯΓɺ3 ͭ໨ͷ౳߸Ͱ͸ɺτϨʔεͷ८ ճੑΛ༻͍͍ͯΔɻ4 ͭ໨ͷ౳߸͸ɺP2 i = Pi ΑΓ੒Γཱͪɺ࠷ޙʹ ∑ i Pi = 1 Λ༻͍ ͍ͯΔɻ͜ΕΑΓɺ࣍ͷؔ܎͕੒Γཱͭɻ H(ρ′) = −Tr (ρ log ρ′) (28) ࣍ʹɺρ′ ͱ ρ ʹ͍ͭͯɺKlein ͷෆ౳ࣜΛద༻͢Δͱɺ(28) ͷؔ܎Λ༻͍ͯɺ͕࣍੒ Γཱͭɻ 0 ≤ D(ρ || ρ′) = Tr (ρ log ρ − ρ log ρ′) = −H(ρ) + H(ρ′) ͜ΕͰɺ H(ρ′) ≥ H(ρ) ͕ࣔ͞Εͨɻ ˙ ͳ͓ɺࣹӨଌఆԋࢉࢠΛ Pi = |i⟩⟨i| ͱͯ͠ɺ|i⟩ Λجఈͱ͢ΔߦྻදࣔΛ༻͍ͨ৔߹ɺ ଌఆޙͷঢ়ଶີ౓ԋࢉࢠ ρ′ ͷߦྻ੒෼͸ɺଌఆલͷঢ়ଶ ρ ͷߦྻද͓͍ࣔͯɺඇର֯੒ ෼Λ͢΂ͯ 0 ʹͨ͠΋ͷʹҰக͠·͢ɻͭ·Γɺ͋Δঢ়ଶີ౓ԋࢉࢠ ρ ͷߦྻදࣔʹ͓ ͍ͯɺͦͷඇର֯੒෼Λ 0 ʹͨ͠ঢ়ଶີ౓ԋࢉࢠ ρ′ Λߟ͑Δͱɺ͔ͳΒͣɺ H(ρ′) ≥ H(ρ) ͕੒Γཱͪ·͢ɻ 0.5 ৚݅෇͖ྔࢠΤϯτϩϐʔ ͜͜Ͱ͸·ͣɺݹయΤϯτϩϐʔʹ͓͚Δ৚݅෇͖ΤϯτϩϐʔΛઆ໌͠·͢ɻ·ͣɺ 2 ͭͷ֬཰ม਺ X ͱ Y ͷಉ࣌෼෍Λ p(x, y) ͱ͢Δ࣌ɺY Λ͋Δ஋ y ʹݻఆͨ͠ࡍͷ X ͷ৚݅෇͖֬཰෼෍ p(x | Y = y) ʹ͍ͭͯΤϯτϩϐʔΛܭࢉ͠·͢ɻ H(X | Y = y) = − ∑ x p(x | y) log p(x | y)
  23. 24 ࣍ʹ Y ʹ͍ͭͯͷظ଴஋ΛऔΓ·͢ɻ͜Ε͕৚݅෇͖ΤϯτϩϐʔͰ͢ɻ H(X | Y ) = ∑

    y p(y)H(X | Y = y) = − ∑ x,y p(y)p(x | y) log p(x | y) (29) ৚݅෇͖֬཰෼෍ͷެࣜ p(x | y) = p(x, y) p(y) Λ༻͍Δͱɺ͜Ε͸࣍ͷΑ͏ʹॻ͖௚͢͜ ͱ͕Ͱ͖·͢ɻ H(X | Y ) = − ∑ x,y p(x, y) log p(x, y) + ∑ x,y p(x, y) log p(y) = − ∑ x,y p(x, y) log p(x, y) + ∑ y p(y) log p(y) = H(X, Y ) − H(Y ) (30) ৚݅෇͖Τϯτϩϐʔ͸ɺH(X | Y = y) ≥ 0 ͷظ଴஋Ͱ͢ͷͰɺH(X | Y ) ≥ 0 ͕੒ Γཱͪ·͢ɻ ࣍ʹɺ৚݅෇͖ྔࢠΤϯτϩϐʔΛఆٛ͠·͕͢ɺྔࢠܥʹ͓͍ͯ͸ɺಉ࣌෼෍ɺ͋ Δ͍͸ɺ৚݅෇͖֬཰෼෍ͷ֓೦͕ͳ͍ͨΊɺ(29) ʹ૬౰͢ΔఆٛΛ༩͑Δ͜ͱ͕Ͱ͖ ·ͤΜɻͦ͜Ͱɺ(30) ͷؔ܎ʹ஫໨ͯ͠ɺ࣍Ͱ৚݅෇͖ྔࢠΤϯτϩϐʔʢConditional quantum entropyʣΛఆٛ͠·͢ɻ H(A | B) = H(AB) − H(B) (31) ʮ0.3 ྔࢠΤϯτϩϐʔʯͰ͸ɺ߹੒ܥ AB ͕७ਮঢ়ଶͷ৔߹ͳͲΛߟ͑Δͱɺඞͣ͠ ΋ H(AB) ≥ H(B) ͱ͸ͳΒͳ͍͜ͱΛࢦఠ͠·ͨ͠ɻ͜Ε͸ɺ৚݅෇͖Τϯτϩϐʔ ͷݴ༿Ͱݴ͏ͱɺ৚݅෇͖ྔࢠΤϯτϩϐʔ͸ɺෛͷ஋ΛͱΔՄೳੑ͕͋Δ͜ͱΛࣔͯ͠ ͍·͢ɻ ͳ͓ɺݹయΤϯτϩϐʔͰ͸ɺ৚݅෇͖Τϯτϩϐʔʹ͍ͭͯɺ࣍ͷνΣΠϯϧʔϧ͕ ੒Γཱͭ͜ͱ͕஌ΒΕ͍ͯ·͢ɻ H(X1 , X2 , · · · , Xn ) = H(X1 ) + H(X2 | X1 ) + H(X3 | X1 , X2 ) + · · · + H(Xn | X1 , · · · , Xn−1 ) ͜Ε͸ɺX1 , · · · , Xn ͷಉ࣌෼෍ʹؔ͢ΔΤϯτϩϐʔ͸ɺ ʮ͢Ͱʹ༻͍ͨ΋ͷΛ৚݅ʹ ෇͚Ճ͍͑ͯ͘ʯͱ͍͏ϧʔϧͷ΋ͱʹɺX1 ͔ΒॱʹͦΕͧΕͷΤϯτϩϐʔΛՃ͑Δ ͜ͱͰಘΒΕΔ͜ͱΛ͓ࣔͯ͠Γɺ(30) ͷؔ܎͔Βؼೲతʹಋ͘͜ͱ͕Ͱ͖·͢ɻྔࢠ Τϯτϩϐʔʹ͓͍ͯ΋ɺ(31) ͷఆ͔ٛΒɺಉ༷ͷؔ܎Λࣔ͢͜ͱ͕Ͱ͖·͢ɻ
  24. 0.6 ྔࢠ૬ޓ৘ใྔ 25 ఆཧ 6 ߹੒ܥ X1 X2 · ·

    · Xn ͷྔࢠΤϯτϩϐʔʹ͍ͭͯɺ࣍ͷؔ܎͕੒ཱ͢Δɻ H(X1 X2 · · · Xn ) = H(X1 ) + H(X2 | X1 ) + H(X3 | X1 X2 ) + · · · + H(Xn | X1 · · · Xn−1 ) [ূ໌] n = 1 ͷ৔߹͸ɺ৚݅෇͖ྔࢠΤϯτϩϐʔͷఆٛ H(X2 | X1 ) = H(X1 X2 ) − H(X1 ) ΑΓɺࣗ໌ʹ੒Γཱͭɻ࣍ʹɺn = k ͷ৔߹ʹ੒ཱ͢ΔͱԾఆͯ͠ɺn = k + 1 ͷ৔߹Λ ߟ͑Δɻ߹੒ܥ X1 · · · Xk+1 Λ X1 , X2 , · · · , Xk Xk+1 ͷ k ݸͷܥʹ෼ׂ͢ΔͱɺԾఆΑ Γɺ͕࣍੒Γཱͭɻ H(X1 X2 · · · Xk ) = H(X1 ) + H(X2 | X1 ) + · · · + H(Xk Xk+1 | X1 · · · Xk−1 ) ͕ͨͬͯ͠ɺ H(Xk Xk+1 | X1 · · · Xk−1 ) = H(Xk | X1 · · · Xk−1 ) + H(Xk+1 | X1 · · · Xk ) ͕੒Γཱͯ͹Α͍ɻ͜Ε͸ɺXk = B, Xk+1 = C, X1 · · · Xk−1 = A ͱஔ͘ͱɺ H(BC | A) = H(B | A) + H(C | AB) ͱಉ஋Ͱ͋Γɺ࣍ͷܭࢉ͔Β੒Γཱͭ͜ͱ͕Θ͔Δɻ H(B | A) + H(C | AB) = H(AB) − H(A) + H(ABC) − H(AB) = H(ABC) − H(A) = H(BC | A) ˙ 0.6 ྔࢠ૬ޓ৘ใྔ ݹయ৘ใཧ࿦ʹ͓͍ͯɺ֬཰ม਺ X ͱ Y ͷ૬ޓ৘ใྔ͸ɺ࣍ࣜͰఆٛ͞Ε·͢ɻ I(X ; Y ) = H(X) + H(Y ) − H(X, Y ) (32) ͜Ε͸ɺ৚݅෇͖ΤϯτϩϐʔΛ༻͍ͯɺ࣍ͷΑ͏ʹॻ͖௚͢͜ͱ΋Ͱ͖·͢ɻ I(X ; Y ) = H(X) − H(X | Y ) = H(Y ) − H(Y | X)
  25. 26 ͜ͷදࣜΛݟΔͱɺ૬ޓ৘ใྔ I(X ; Y ) ͸ɺ֬཰ม਺ X ͷෆ֬ఆੑ͕ɺ֬཰ม਺ Y

    ͷ஋Λ஌Δ͜ͱʹΑͬͯɺฏۉతʹͲΕ΄Ͳݮগ͢Δ͔Λද͢͜ͱ͕Θ͔Γ·͢ɻ࣮ ࡍɺX ͱ Y ͕ಠཱͰ͋Ε͹ɺI(X ; Y ) = 0 ͱͳΔ͜ͱ͸ɺఆ͔ٛΒ͙͢ʹΘ͔Γ·͢ɻ I(X ; Y ) ͸ X ͱ Y ʹ͍ͭͯରশͳͷͰɺ֬཰ม਺ Y ͷෆ֬ఆੑ͕ɺ֬཰ม਺ X ͷ஋ Λ஌Δ͜ͱʹΑͬͯɺฏۉతʹͲΕ΄Ͳݮগ͢Δ͔Λද͢ͱݟͯ΋ಉ͡Ͱ͢ɻ ·ͨɺX ͱ Y ͷ૬ޓ৘ใྔ͸ɺ࣮ࡍͷಉ࣌෼෍ p(x, y) ͱɺX ͱ Y ͕ಠཱͱԾఆ͠ ͨ৔߹ͷಉ࣌෼෍ p(x)p(y) ͷ KL μΠόʔδΣϯεʹҰக͠·͢ɻ I(X ; Y ) = D(p(x, y) || p(x)p(y)) (33) ͜ΕΑΓɺ૬ޓ৘ใྔ͸ඇෛ஋ΛऔΓɺX ͱ Y ͕ಠཱͳ৔߹ʹݶͬͯɺ0 ʹͳΔ͜ͱ ͕Θ͔Γ·͢ɻ I(X ; Y ) ≥ 0 I(X ; Y ) = 0 ⇔ p(x, y) = p(x)p(y) ྔࢠ৘ใཧ࿦ʹ͓͚Δྔࢠ૬ޓ৘ใྔʢQuantum mutual informationʣ͸ɺ(32) ʹର Ԡͯ͠ɺ I(A ; B) = H(A) + H(B) − H(AB) Ͱఆٛ͞Ε·͢ɻ(33) ʹରԠ͢Δؔ܎ࣜ΋੒Γཱͪɺ࣍ͷఆཧ͕੒ཱ͠·͢ɻ ఆཧ 7 ߹੒ܥ AB ͷঢ়ଶີ౓ԋࢉࢠΛ ρAB ͱ͢Δͱɺ෦෼ܥ AɺB ͷঢ়ଶີ౓ԋࢉ ࢠ͸ɺ ρA = TrB ρAB ρB = TrA ρAB Ͱ༩͑ΒΕΔɻ͜ͷ࣌ɺ࣍ͷؔ܎͕੒Γཱͭɻ I(A ; B) = D(ρAB || ρA ⊗ ρB ) I(A ; B) ≥ 0 I(A ; B) = 0 ⇔ ρAB = ρA ⊗ ρB [ূ໌] ఆཧ 4 ͷ (26) ʹྔࢠ૬ޓ৘ใྔͷఆٛΛ୅ೖ͢Δ͜ͱͰɺ I(A ; B) = D(ρAB || ρA ⊗ ρB ) ͕ಘΒΕΔɻ͜Εʹఆཧ 3 Λద༻͢Δ͜ͱͰɺ࢒Γͷؔ܎͕ಘΒΕΔɻ ˙
  26. 0.6 ྔࢠ૬ޓ৘ใྔ 27 ৚݅෇͖ΤϯτϩϐʔΛ༻͍Δ͜ͱͰɺ৚݅෇͖૬ޓ৘ใྔΛఆٛ͢Δ͜ͱ΋Ͱ͖· ͢ɻݹయ৘ใཧ࿦ͷ৔߹͸ɺ I(X ; Y | Z)

    = H(X | Z) + H(Y | Z) − H(X, Y | Z) (34) ͱͯ͠ఆٛ͞Ε·͕͢ɺ͜Ε͸ɺZ = z ͱܾ·ͬͨ৔߹ͷ৚݅෇͖֬཰෼෍ p(x, y | z) ʹΑΔ૬ޓ৘ใྔ I(X ; Y | Z = z) Λ Z ʹ͍ͭͯظ଴஋Λऔͬͨ΋ͷͱߟ͑Δ͜ͱ͕Ͱ ͖·͢ɻ I(X ; Y | Z) = ∑ z p(z)I(X ; Y | Z = z) (35) ͜ͷදࣜΑΓɺI(X ; Y | Z) ≥ 0 ͕੒Γཱͭ͜ͱ͕Θ͔Γɺ͞Βʹɺ͜Εͱಉ஋ͳ࣍ͷ ෆ౳͕ࣜ੒Γཱͪ·͢ɻ H(X, Y, Z) + H(Z) ≤ H(X, Z) + H(Y, Z) ͜ΕΛݹయΤϯτϩϐʔʹؔ͢Δ Strong subadditivity ͱݴ͍·͢ɻ͜ͷؔ܎͸ɺ2 छ ྨͷू߹ R = {X, Y } ͱ S = {Y, Z} Λߟ͑Δͱɺू߹࿦ͷه߸Λܗࣜతʹ༻͍ͯɺ H(R ∪ S) + H(R ∩ S) ≤ H(R) + H(S) ͱॻ͖௚͢͜ͱ͕Ͱ͖·͢ɻ͞Βʹ·ͨɺ͜Ε͸ɺ࣍ͷؔ܎ͱ΋ಉ஋ʹͳΓ·͢ɻ I (X ; (Y, Z)) ≥ I(X ; Z) (36) ͜ͷ࠷ޙͷؔ܎͸ɺಉ࣌෼෍ (Y, Z) ͔Β Y ͷ৘ใΛऔΓআ͘ͱɺX ͱͷ૬ޓ৘ใྔ ͕ݮগ͢Δͱ͍͏͜ͱΛ͍ࣔͯ͠·͢ɻͦΕͰ͸ɺ͜Εͱಉؔ͡܎ΛྔࢠΤϯτϩϐʔ ʹؔͯࣔ͢͜͠ͱ͸Ͱ͖ΔͰ͠ΐ͏͔ʁɹ·ͣɺ৚݅෇͖ྔࢠ૬ޓ৘ใྔʢConditional quantum mutual informatinʣ͸ɺ(34) ʹରԠ͢ΔܗͰɺ I(A ; B | C) = H(A | C) + H(B | C) − H(AB | C) ͱఆٛ͞Ε·͢ɻ͔͠͠ͳ͕Βɺ৚݅෇͖ྔࢠΤϯτϩϐʔͷͱ͜ΖͰઆ໌ͨ͠Α͏ʹɺ ྔࢠܥͰ͸ɺಉ࣌֬཰෼෍Λ༻͍ͨٞ࿦͕Ͱ͖ͳ͍ͨΊɺ(35) ͷΑ͏ͳؔ܎Λ༻͍ͯɺྔ ࢠ৚݅෇͖૬ޓ৘ใྔ͕ඇෛʹͳΔͱओு͢Δ͜ͱ͸Ͱ͖·ͤΜɻ࣮͸ɺྔࢠΤϯτϩ ϐʔͷ৔߹͸ɺݹయΤϯτϩϐʔͱ͸·ͬͨ͘ҟͳΔಓےͰɺStrong subadditivity ͕ࣔ ͞Ε·͢ɻͦͷେݩͱͳΔͷ͕ɺ࣍ͷఆཧͰ͢ɻ ఆཧ 8 ߹੒ܥ AB ͷ 2 छྨͷঢ়ଶີ౓ԋࢉࢠ ρAB , σAB ʹ͍ͭͯɺͦΕͧΕɺܥ B Λ τϨʔεΞ΢τͨ͠΋ͷΛ ρA , σA ͱ͢Δ࣌ɺ࣍ͷෆ౳͕ࣜ੒Γཱͭɻ D(ρA || σA ) ≤ D(ρAB || σAB )
  27. 28 ɹ ͜ͷఆཧͷূ໌͸ɺ࣮͸ɺͦΕ΄Ͳ؆୯Ͱ͸͋Γ·ͤΜɻ਺ֶతʹ͔ͳΓࠐΈೖͬͨٞ࿦ ͕ඞཁͱͳΓ·͢ɻ͜͜Ͱ͸ɺ͜Ε͕੒Γཱͭ͜ͱΛೝΊͯɺྔࢠΤϯτϩϐʔͷ Strong subadditivity Λࣔ͠·͢ɻͳ͓ɺྔࢠ૬ରΤϯτϩϐʔ D(ρ || σ)

    ͸ɺρ ͱ σ ͷྨࣅ౓ ΛଌΔࢦඪͰͨ͠ͷͰɺ্هͷఆཧ͸ɺ߹੒ܥ AB ʹ͓͍ͯɺܥ B ͷ৘ใΛࣦ͏ͱɺ2 ͭ ͷঢ়ଶͷྨࣅ౓͕ߴ͘ͳΔɺͭ·Γɺ2 ͭͷঢ়ଶ͸ΑΓ۠ผ͠ʹ͘͘ͳΔͱ͍͏ࣄΛҙຯ ͠·͢ɻ ͸͡Ίʹɺ্هͷఆཧΛ༻͍ͯ (36) ʹରԠ͢Δɺ࣍ͷఆཧΛࣔ͠·͢ɻ ఆཧ 9 ߹੒ܥ ABC ͷ෦෼ܥʹؔ͢Δྔࢠ૬ޓ৘ใྔʹ͍ͭͯɺ ࣍ͷෆ౳͕ࣜ੒Γཱͭɻ I(A ; BC) ≥ I(A ; C) [ূ໌] ߹੒ܥ ABC ͷঢ়ଶີ౓ԋࢉࢠΛ ρABC ͱͯ͠ɺ͜ΕΛܥ A ͱܥ BC ʹ෼཭ͨ͠ ࡍͷͦΕͧΕͷঢ়ଶີ౓ԋࢉࢠͷςϯιϧੵΛ σABC = ρA ⊗ ρBC (37) ͱஔ͘ɻ͜ͷ࣌ɺρABC ͱ σABC ͷͦΕͧΕʹ͍ͭͯɺܥ B ΛτϨʔεΞ΢τͨ͠΋ͷ Λ ρAB , σAB ͱ͢Δͱɺఆཧ 8 ΑΓɺ࣍ͷؔ܎͕੒Γཱͭɻ D(ρABC || σABC ) ≥ D(ρAC || σAC ) (37) ͷఆٛΛ୅ೖ͢Δͱɺ͕࣍ಘΒΕΔɻ D(ρABC || ρA ⊗ ρBC ) ≥ D(ρAC || ρA ⊗ ρC ) ఆཧ 7 ͷؔ܎ I(A ; B) = D(ρAB || ρA ⊗ ρB ) ΑΓɺ͜Ε͸ࣔ͢΂͖ؔ܎ʹҰக͍ͯ͠Δɻ ˙ ྔࢠ૬ޓ৘ใྔͷఆٛΛ༻͍ͯɺఆཧ 9 ͷෆ౳ࣜΛྔࢠΤϯτϩϐʔͰॻ͖௚͢ͱɺ࣍ ͷྔࢠΤϯτϩϐʔʹؔ͢Δ Strong subadditivity ͕ಘΒΕ·͢ɻ H(ABC) + H(C) ≤ H(AC) + H(BC) (38) ͋Δ͍͸ɺ৚݅෇͖ྔࢠ૬ޓ৘ใྔ͕ඇෛͰ͋Δͱ͍͏ɺ࣍ͷ৚݅ͱ΋ಉ஋ʹͳΓ·͢ɻ I(A ; B | C) ≥ 0 (39)
  28. 0.6 ྔࢠ૬ޓ৘ใྔ 29 ͜͜·Ͱ͸ɺݹయΤϯτϩϐʔͷ৔߹ͱ΄΅ಉ݁͡࿦Ͱ͕͢ɺྔࢠܥʹ͓͍ͯ͸ɺ͜Ε Λ͞Βʹมܗͯ͠ɺ࣍ͷఆཧΛಘΔ͜ͱ͕Ͱ͖·͢ɻ ఆཧ 10 ߹੒ܥ ABC ͷ෦෼ܥʹ͍ͭͯɺ࣍ͷؔ܎͕੒Γཱͭɻ

    H(AC) + H(BC) ≥ H(A) + H(B) [ূ໌] ߹੒ܥ ABC ʹܥ D ΛՃ͑ͯ७ਮԽ͢Δͱɺఆཧ 1 ΑΓɺ H(AC) = H(BD), H(ABC) = H(D) ͕੒Γཱͭɻ͜ΕΛ Strong subadditivity H(ABC) + H(C) ≤ H(AC) + H(BC) ʹ୅ೖ͢Δͱɺ࣍ͷؔ܎͕ಘΒΕΔɻ H(D) + H(C) ≤ H(BD) + H(BC) ͜͜ͰɺB ˠ CɺD ˠ AɺC ˠ B ͱه߸Λஔ͖׵͑Δͱɺࣔ͢΂͖ؔ܎ʹҰக͢Δɻ ˙ ্هͷ݁Ռ͸ɺ৚݅෇͖ྔࢠΤϯτϩϐʔΛ༻͍ͯɺ࣍ͷΑ͏ʹॻ͖௚͢͜ͱ͕Ͱ͖ ·͢ɻ H(C | A) + H(C | B) ≥ 0 (40) ݹయΤϯτϩϐʔͷ৔߹ɺ৚݅෇͖Τϯτϩϐʔ͸ඇෛ஋ΛऔΔͷͰɺ͜Ε͸ࣗ໌ʹ੒ Γཱͭؔ܎Ͱ͕͢ɺྔࢠΤϯτϩϐʔͷ৔߹͸ɺܾͯࣗ͠໌ͳ݁ՌͰ͸͋Γ·ͤΜɻྔࢠ ܥʹ͓͍ͯ͸ɺ৚݅෇͖ྔࢠΤϯτϩϐʔ͕ෛʹͳΔ͜ͱ΋͋Δ͔ΒͰ͢ɻ(40) ͸ɺܥ C ʹରͯ͠ɺ2 छྨͷ৚݅෇͖ྔࢠΤϯτϩϐʔͷ࿨͸ɺෛʹ͸ͳΒͳ͍͜ͱΛҙຯ͠· ͢ɻͭ·ΓɺҰํ͕ෛʹͳͬͨ৔߹ɺ΋͏Ұํ͸ɺͦΕΛଧͪফ͢Ҏ্ʹେ͖ͳ஋ʹͳΔ ͷͰ͢ɻ ৚݅෇͖ྔࢠΤϯτϩϐʔ H(C | A) ͕ෛʹͳΔྫͱͯ͠ɺࠞ߹ঢ়ଶͷܥ A ʹܥ C Λ Ճ͑ͯ७ਮԽ͢Δɺ͢ͳΘͪɺ߹੒ܥ AC Λ७ਮঢ়ଶʹ͢Δͱ͍͏৔߹͕ߟ͑ΒΕ·͢ɻ (40) ͷ݁Ռ͸ɺܥ A ͱܥ B ʹɺಉ͡ܥ C ΛՃ͑ͯɺ྆ํΛಉ࣌ʹ७ਮঢ়ଶʹ͸Ͱ͖ͳ ͍͜ͱΛҙຯ͓ͯ͠Γɺ͜ͷΑ͏ͳྔࢠܥͷੑ࣭Λ monogamy*4ͱݴ͍·͢ɻ *4 ೔ຊޠͰݴ͏ͱʮҰ෉Ұ්ੑʯ ɻ
  29. 30 0.7 ͦͷଞͷੑ࣭ ͜͜Ͱ͸ɺ͜Ε·Ͱʹઆ໌͍ͯ͠ͳ͔ͬͨɺͦͷଞͷओཁͳੑ࣭Λ঺հ͠·͢ɻ͸͡Ί ʹɺྔࢠΤϯτϩϐʔ͸ɺݹయΤϯτϩϐʔͱಉ༷ͷ Concavity Λ࣋ͭ͜ͱΛࣔ͠·͢ɻ ·ͣɺݹయΤϯτϩϐʔͷ Concavity ͱ͸ɺ࣍ͷΑ͏ͳੑ࣭Ͱ͢ɻࠓɺෳ਺ͷ֬཰෼෍

    qi (x) (i = 1, 2, · · · ) ͕͋ΓɺͦΕͧΕͷݹయΤϯτϩϐʔΛ H(qi ) ͱද͠·͢ɻ͜ͷ࣌ɺ ͜ΕΒͷ֬཰෼෍Λࠞͥ߹Θͤͯɺ৽ͨͳ֬཰෼෍ p(x) = ∑ i pi qi (x) Λ࡞Γ·͢ɻ܎਺ pi ΋·ͨ֬཰෼෍Ͱɺ ∑ i pi = 1 Λຬͨ͠·͢ɻ͜ͷ࣌ɺp(x) ʹରԠ ͢ΔݹయΤϯτϩϐʔΛ H(p) ͱͯ͠ɺ࣍ͷෆ౳͕ࣜ੒Γཱͪ·͢ɻ͜Ε͕ɺݹయΤϯτ ϩϐʔͷ Concavity Ͱ͢ɻ H(p) ≥ ∑ i pi H(qi ) ௚ײతʹݴ͏ͱɺෳ਺ͷ֬཰෼෍ʹରͯ͠ɺ͜ΕΒΛ͞ΒʹҰఆͷ֬཰෼෍Ͱࠞͥ߹Θ ͤΔͨΊɺશମͱͯ͠ͷෆ֬ఆੑ͸͞Βʹ૿Ճ͢Δͱ͍͏͜ͱͰ͢ɻྔࢠΤϯτϩϐʔʹ ͓͍ͯ΋ɺ͜Εʹྨࣅͷෆ౳͕ࣜ੒Γཱͪ·͢ɻ ఆཧ 11 ෳ਺ͷঢ়ଶີ౓ԋࢉࢠ ρi ∈ L(H) (i = 1, 2, · · · ) ͕͋ΓɺͦΕͧΕͷྔࢠΤϯτ ϩϐʔΛ H(ρi ) ͱද͢ɻ·ͨɺ͜ΕΒΛ֬཰෼෍ pi ʹैͬͯࠞͥ߹Θͤͨɺ৽ͨͳঢ়ଶ ີ౓ԋࢉࢠΛ ρ = ∑ i pi ρi ͱͯ͠ɺ͜ΕʹରԠ͢ΔྔࢠΤϯτϩϐʔΛ H(ρ) ͱද͢ɻ͜ͷ࣌ɺ࣍ͷෆ౳͕ࣜ੒Γ ཱͭɻ H(ρ) ≥ ∑ i pi H(ρi ) [ূ໌] ঢ়ଶີ౓ԋࢉࢠ ρi (i = 1, 2, · · · ) ͕هड़͢Δܥ A ʹ৽ͨʹܥ X ΛՃ͑ͯɺ࣍ͷݹ యʕྔࢠܥ XA Λ༻ҙ͢Δɻ ρXA = ∑ i pi |iX ⟩⟨iX | ⊗ ρi
  30. 0.7 ͦͷଞͷੑ࣭ 31 ͜ͷ࣌ɺ෦෼ܥ A ͱ X ͷঢ়ଶີ౓ԋࢉࢠ͸࣍ʹͳΔɻ ρX =

    TrA ρXA = ∑ i pi |iX ⟩⟨iX | ρA = TrX ρXA = ∑ i pi ρi ্هͷ ρA ͸ఆཧͰ༩͑ΒΕͨ ρ ʹҰக͓ͯ͠Γɺܥ A ͷྔࢠΤϯτϩϐʔ H(A) ʹ ͍ͭͯɺ H(A) = H(ρ) ͕੒Γཱͭɻ͞ΒʹɺρX , ρXA Λ༻͍ͯɺܥ X ͱܥ XAɺͦΕͧΕͷྔࢠΤϯτϩϐʔ Λܭࢉ͢Δɻ্هͷ ρX ͸ਖ਼ن௚ަجఈ |iX ⟩ ʹΑΔεϖΫτϧ෼ղΛ༩͍͑ͯΔͷͰɺ ܥ X ͷྔࢠΤϯτϩϐʔ͸࣍Ͱ༩͑ΒΕΔɻ H(X) = ∑ i pi log pi ܥ XA ʹ͍ͭͯ͸ɺρi ͷεϖΫτϧ෼ղΛ ρi = ∑ j qi j |jA ⟩⟨jA | ͱͯ͠ɺ ρXA = ∑ i,j pi qi j |iX ⟩⟨iX | ⊗ |jA ⟩⟨jA | ͕੒Γཱͭɻ͜Ε͸ɺ|iX ⟩ ⊗ |jA ⟩ Λਖ਼ن௚ަجఈͱ͢Δ ρXA ͷεϖΫτϧ෼ղΛ༩͑ͯ ͓Γɺ͜ΕΑΓɺܥ XA ͷྔࢠΤϯτϩϐʔ͸࣍ͷΑ͏ʹܭࢉ͞ΕΔɻ H(XA) = ∑ i,j (pi qi j ) log ( pi qi j ) = ∑ i,j (pi qi j ) log pi + ∑ i,j (pi qi j ) log qi j = ∑ i pi log pi + ∑ i pi ∑ j qi j log qi j = H(X) + ∑ i pi H(ρi ) ͜͜Ͱɺఆཧ 4ʢSubaditivityʣΑΓ੒Γཱͭ H(XA) ≤ H(X) + H(A)
  31. 32 ʹ্هͷ݁ՌΛ୅ೖ͢Δͱɺ H(X) + ∑ i pi H(ρi ) ≤

    H(X) + H(ρ) ͱͳΓɺ͜ΕΑΓɺఆཧͷओு H(ρ) ≥ ∑ i pi H(ρi ) ͕ಘΒΕΔɻ ˙ ࣍ʹɺఆཧ 4 Ͱࣔͨ͠ྔࢠΤϯτϩϐʔͷ Subaditivity ʹྨࣅͨ͠ɺ࣍ͷࡾ֯ෆ౳ࣜΛ ࣔ͠·͢ɻ͜Ε͸ɺSubaditivity ʹɺ७ਮԽͷςΫχοΫΛద༻͢Δ͜ͱͰಘΒΕ·͢ɻ ఆཧ 12 ߹੒ܥ AB ͱͦͷ෦෼ܥ AɺB ͷྔࢠΤϯτϩϐʔʹ͍ͭͯɺ࣍ͷෆ౳͕ࣜ੒ Γཱͭɻ H(AB) ≥ |H(A) − H(B)| [ূ໌] ܥ AB ʹܥ C ΛՃ͑ͯ७ਮԽͨ͠߹੒ܥ ABC Λߟ͑Δͱɺ H(AC) = H(B), H(C) = H(AB) ͕੒Γཱͭɻఆཧ 4 ΑΓ੒Γཱͭ H(AC) ≤ H(A) + H(C) ʹ͜ΕΒΛ୅ೖ͢Δͱɺ H(B) ≤ H(A) + H(AB) ͢ͳΘͪɺ H(AB) ≥ H(B) − H(A) ͕ಘΒΕΔɻA ͱ B ͷରশੑʹΑΓɺA ͱ B ΛೖΕସ͑ͨٞ࿦͔Βɺ H(AB) ≥ H(A) − H(B) ΋੒ΓཱͭͷͰɺ͜ΕΒΛ͋ΘͤΔͱఆཧͷओு H(AB) ≥ |H(A) − H(B)| ͕ಘΒΕΔɻ ˙ ࠷ޙʹɺఆཧ 8 ͷԠ༻ͱͯ͠ɺ೚ҙͷྔࢠνϟωϧʹΑΔঢ়ଶมԽ͸ܥͷྨࣅੑΛߴΊ Δͱ͍͏ɺ࣍ͷఆཧΛࣔ͠·͢ɻ
  32. 0.7 ͦͷଞͷੑ࣭ 33 ఆཧ 13 ܥ A ͷঢ়ଶΛܥ B ͷঢ়ଶʹม׵͢Δྔࢠνϟωϧ

    N ͕͋Γɺ ܥ A ͷ 2 छྨͷ ঢ়ଶີ౓ԋࢉࢠ ρ, σ ʹ͍ͭͯɺͦΕͧΕΛ N ͰมԽͨ͠ঢ়ଶີ౓ԋࢉࢠΛ N(ρ), N(σ) ͱ͢Δɻ͜ͷ࣌ɺྔࢠ૬ରΤϯτϩϐʔʹ͍ͭͯɺ࣍ͷෆ౳͕ࣜ੒Γཱͭɻ D(N(ρ) || N(σ)) ≤ D(ρ || σ) [ূ໌] ʮ0.2.5 ঢ়ଶมԽͱྔࢠνϟωϧʯͰࣔͨ͠Α͏ʹɺྔࢠνϟωϧ N ʹΑΔม׵ ͸ɺΞΠιϝτϦʔԋࢉࢠ U ∈ L(A, HBE ) ʹΑΔม׵ޙʹɺ؀ڥܥ E ΛτϨʔεΞ΢ τ͢Δͱ͍͏खଓ͖ʹҰக͢Δɻ N(ρ) = TrE (UρU†) N(σ) = TrE (UσU†) ͦ͜Ͱ·ͣɺΞΠιϝτϦʔԋࢉࢠ U ʹΑΔม׵͸ɺྔࢠ૬ରΤϯτϩϐʔΛมԽ͞ ͤͳ͍͜ͱΛࣔ͢ɻࠓɺρ ͱ σ ΛͦΕͧΕεϖΫτϧ෼ղͨ͠΋ͷΛ ρ = ∑ i pi |iA ⟩⟨iA | σ = ∑ j qj |jA ⟩⟨jA | ͱ͢Δͱɺ͜ΕΒͷྔࢠ૬ରΤϯτϩϐʔ͸ɺ࣍Ͱܭࢉ͞ΕΔ*5ɻ D(ρ || σ) = Tr(ρ log ρ) − Tr(ρ log σ) = ∑ i pi log pi − Tr    ∑ i,j (pi log qj )|iA ⟩⟨iA |jA ⟩⟨jA |    = ∑ i pi log pi − ∑ i,j |⟨iA |jA ⟩|2pi log qj (41) Ұํɺ্هͷ ρ ͱ σ Λ U Ͱม׵͢Δͱ͕࣍ಘΒΕΔɻ UρU† = ∑ i pi U|iA ⟩⟨iA |U† UσU† = ∑ j qj U|jA ⟩⟨jA |U† *5 Ұൠʹɺ|iA⟩ ͱ |jA⟩ ͸ɺҟͳΔਖ਼ن௚ަجఈͱͳΔɻ
  33. 34 ΞΠιϝτϦʔԋࢉࢠͷੑ࣭ U†U = I ΑΓɺ{U|iA ⟩}ɺ͓Αͼɺ {U|jA ⟩} ͸ɺͲͪΒ

    ΋ਖ਼ن௚ަܥͰ͋ΓɺU ʹΑΔม׵Ͱ ρ, σ ͷݻ༗஋ pi , qi ͸มԽͤͣɺ log ( UρU† ) = ∑ i (log pi )U|iA ⟩⟨iA |U† log ( UσU† ) = ∑ j (log qj )U|jA ⟩⟨jA |U† ͕੒Γཱͭɻ͜ΕΑΓɺม׵ޙͷྔࢠ૬ରΤϯτϩϐʔ͸ɺ࣍ͷΑ͏ʹܭࢉ͞ΕΔɻ D(UρU† || UσU†) = Tr { (UρU†) log ( UρU† )} − Tr { (UρU†) log ( UσU† )} = ∑ i pi log pi − Tr    ∑ i,j (pi log qj )U|iA ⟩⟨iA |U†U|jA ⟩⟨jA |U†    = ∑ i pi log pi − ∑ i,j |⟨iA |jA ⟩|2pi log qj (42) (41)(42) ΑΓɺ͔֬ʹɺ D(ρ || σ) = D(UρU† || UσU†) ͕੒Γཱͭɻ ࣍ʹɺ؀ڥܥ E ΛτϨʔεΞ΢τ͢Δૢ࡞Λߟ͑Δͱɺఆཧ 8 ΑΓɺ D(TrE (UρU†) || TrE (UσU†)) ≤ D(UρU† || UσU†) ͕੒Γཱͭɻ Ҏ্ͷ݁ՌΛ·ͱΊΔͱɺ D(N(ρ) || N(σ)) = D(TrE (UρU†) || TrE (UσU†)) ≤ D(UρU† || UσU†) = D(ρ || σ) ͱͳΓɺ͜ΕͰఆཧͷओு͕ࣔ͞Εͨɻ ˙ 0.8 ʢࢀߟʣStrong subadditivity ͱಉ஋ͳ৚݅ ຊߘͰ͸ɺఆཧ 8 ʹج͍ͮͯఆཧ 9 Λࣔ͠ɺ͜Ε͕ (38) ͷ Strong subsadditivity ʹ Ұக͢Δ͜ͱΛࣔ͠·ͨ͠ɻ͋Δ͍͸·ͨɺఆཧ 8 ͷԠ༻ͱͯ͠ɺఆཧ 13 Λࣔ͠·ͨ͠ɻ ࣮͸ɺ͜ΕΒΛؚΉҎԼͷ৚݅͸͢΂ͯಉ஋ʹͳΔ͜ͱ͕஌ΒΕ͍ͯ·͢ɻ
  34. 0.8 ʢࢀߟʣStrong subadditivity ͱಉ஋ͳ৚݅ 35 ఆཧ 14 ࣍ͷ৚݅͸ɺ͢΂ͯಉ஋ʹͳΔɻ 1. D(ρA

    || σA ) ≤ D(ρAB || σAB ) : ఆཧ 8 2. D(N(ρ) || N(σ)) ≤ D(ρ || σ) : ఆཧ 13 3. ∑ i pi D(ρi || σi ) ≥ D ( ∑ i pi ρi || ∑ i pi σi ) (pi > 0, ∑ i pi = 1) 4. I(A ; BC) ≥ I(A ; C) : ఆཧ 9 5. H(ABC) + H(C) ≤ H(AC) + H(BC) : (38) 6. I(A ; B | C) ≥ 0 : (39) 7. H(AC) + H(BC) ≥ H(A) + H(B) : ఆཧ 10 4.ʙ 7. ͕ಉ஋Ͱ͋Δ͜ͱ͸ɺຊจதͰ΋આ໌ͨ͠Α͏ʹɺఆ͔ٛΒͷ௚઀ܭࢉͰ֬ೝͰ ͖·͢ɻ3. ͸ɺ͜Ε·Ͱʹઆ໌͍ͯ͠·ͤΜͰ͕ͨ͠ɺྔࢠ૬ରΤϯτϩϐʔͷ Jointly convexity ͱݺ͹ΕΔੑ࣭Ͱ͢ɻ1.ʙ 3. ͷͲΕ͔ 1 ͕ͭ୯ಠͰূ໌Ͱ͖Ε͹ɺ͔ͦ͜Β Strong subadditivity Λಋ͚Δ͜ͱʹͳΓ·͢ɻจݙʹΑͬͯɺStrong subadditivity ͷ ূ໌ʹ͞·͟·ͳόϦΤʔγϣϯ͕ݟΒΕΔͷ͸ɺ͜Ε͕ཧ༝ͱͳΓ·͢ɻͨͱ͑͹ɺ[3] Ͱ͸ɺ্هͷ 1. Λ͸͡Ίʹূ໌͍ͯ͠·͢ɻ͋Δ͍͸ɺ[1] Ͱ͸ɺLieb ͷఆཧ͔Βɺ্ه ͷ 3. Λূ໌͢Δͱ͍͏ಓےΛ࠾༻͍ͯ͠·͢ɻ ͜͜Ͱ͸ɺࢀߟͱͯ͠ɺ3. Λ΋ͱʹͯ͠ɺ5. ͷ Strong subadditivity Λಋ͘ํ๏Λࣔ ͠·͢ɻ ఆཧ 15 ྔࢠ૬ରΤϯτϩϐʔͷ Jointly convexity ∑ i pi D(ρi || σi ) ≥ D ( ∑ i pi ρi || ∑ i pi σi ) (pi > 0, ∑ i pi = 1) ΑΓɺྔࢠΤϯτϩϐʔͷ Strong subadditivity H(ABC) + H(C) ≤ H(AC) + H(BC) ͕ಘΒΕΔɻ
  35. 36 [ূ໌] ߹੒ܥ ABC ͷঢ়ଶີ౓ԋࢉࢠ ρABC ʹରͯ͠ɺ࣍ͷؔ਺ T Λఆٛ͢Δɻ T(ρABC

    ) = H(A) − H(AC) + H(B) − H(BC) ܥ ABC ͕७ਮঢ়ଶͷ৔߹ɺH(A) = H(BC), H(AC) = H(B) ͱͳΔ͜ͱ͔Βɺ T(ρABC ) = 0 ͱͳΔɻ Ұํɺ෦෼ܥ AC ʹ͍ͭͯɺρAC ͱ ρA ⊗ 1 d IC (d = dim HC ) ͱ͍͏ 2 छྨͷঢ়ଶີ ౓ԋࢉࢠͷྔࢠ૬ରΤϯτϩϐʔΛܭࢉ͢Δͱɺ࣍ͷܭࢉ͕੒Γཱͭɻ ʢ2 ͭ໨ͷ౳߸ʹ ͍ͭͯ͸ɺఆཧ 4 ͷূ໌ͷ (21) Λࢀরɻ ʣ D ( ρAC || ρA ⊗ 1 d IC ) = Tr (ρAC log ρAC ) − Tr { ρAC log ( ρA ⊗ 1 d IC )} = −H(AC) − Tr {ρAC log (ρA ⊗ IC )} − Tr { ρAC log ( IA ⊗ 1 d IC )} ࠷ޙͷදࣜͷୈ 2 ߲ͱୈ 3 ߲͸ɺ࣍ͷΑ͏ʹܭࢉ͞ΕΔɻ ʢୈ 2 ߲ͷܭࢉʹ͍ͭͯ͸ɺ ఆཧ 4 ͷূ໌ͷ (25) ͷઆ໌Λࢀরɻ ʣ − Tr {ρAC log (ρA ⊗ IC )} = H(A) − Tr { ρAC log ( IA ⊗ 1 d IC )} = −Tr { ρAC ( log 1 d ) IA ⊗ IC } = (log d)Tr ρAC = log d ͕ͨͬͯ͠ɺ࣍ͷؔ܎͕੒Γཱͭɻ D ( ρAC || ρA ⊗ 1 d IC ) = H(A) − H(AC) + log d ಉ༷ʹͯ͠ɺ D ( ρBC || ρB ⊗ 1 d IC ) = H(B) − H(BC) + log d ͕੒ΓཱͭͷͰɺ࠷ऴతʹɺ࣍ͷؔ܎͕ಘΒΕΔɻ T(ρABC ) = D ( ρAC || ρA ⊗ 1 d IC ) + D ( ρBC || ρB ⊗ 1 d IC ) − 2 log d (43) ͜͜Ͱɺ೚ҙͷঢ়ଶີ౓ԋࢉࢠ ρABC ʹ͍ͭͯɺ͜ΕΛ HABC = HA ⊗ HB ⊗ HC ͷ ਖ਼ن௚ަجఈ |iABC ⟩ ͰεϖΫτϧ෼ղͨ͠΋ͷΛ ρABC = ∑ i pi |iABC ⟩⟨iABC |
  36. 0.8 ʢࢀߟʣStrong subadditivity ͱಉ஋ͳ৚݅ 37 ͱ͢Δͱɺ͖͞΄Ͳ෦෼ܥ AC ʹؔ͢Δྔࢠ૬ରΤϯτϩϐʔͷܭࢉʹ༻͍ͨঢ়ଶີ౓ ԋࢉࢠ͸ɺ࣍ͷΑ͏ʹද͢͜ͱ͕Ͱ͖Δɻ ρCA

    = ∑ i pi TrB (|iABC ⟩⟨iABC |) = ∑ i pi ρi ρA ⊗ 1 d IC = ∑ i pi TrBC (|iABC ⟩⟨iABC |) ⊗ 1 d IC = ∑ i pi σi ͜͜Ͱɺ ρi = TrB (|iABC ⟩⟨iABC |) σi = TrBC (|iABC ⟩⟨iABC |) ⊗ 1 d IC ͱఆٛͨ͠ɻ͞Βʹɺྔࢠ૬ରΤϯτϩϐʔͷ Jointly convexity Λ༻͍Δͱɺ࣍ͷෆ౳ ͕ࣜ੒Γཱͭɻ D ( ρAC || ρA ⊗ 1 d IC ) = D ( ∑ i pi ρi || ∑ i pi σi ) ≤ ∑ i pi D(ρi || σi ) = ∑ i pi D ( TrB (|iABC ⟩⟨iABC |) || TrBC (|iABC ⟩⟨iABC |) ⊗ 1 d IC ) ෦෼ܥ BC ʹ͍ͭͯ΋ಉ༷ͷؔ܎͕੒ΓཱͭͷͰɺ(43) ͱ͋Θͤͯɺ࣍ͷෆ౳͕ࣜಘ ΒΕΔɻ T(ρABC ) ≤ ∑ i pi { D ( TrB (|iABC ⟩⟨iABC |) || TrBC (|iABC ⟩⟨iABC |) ⊗ 1 d IC ) + D ( TrA (|iABC ⟩⟨iABC |) || TrAC (|iABC ⟩⟨iABC |) ⊗ 1 d IC ) } − 2 log d Ұํɺ(43) ͷؔ܎Λ༻͍Δͱɺ্ࣜͷӈล͸ɺ ∑ i pi T(|iABC ⟩⟨iABC |) ʹҰக͢Δ͜ͱ ͕Θ͔Δɻ๯಄Ͱड़΂ͨΑ͏ʹɺ७ਮঢ়ଶ |iABC ⟩⟨iABC | ʹରͯؔ͠਺ T ͷ஋͸ 0 ͱͳ ΔͷͰɺ݁ہɺ T(ρABC ) ≤ 0 ͕੒Γཱͭ͜ͱ͕Θ͔ͬͨɻT(ρABC ) ͷఆٛʹ໭Δͱɺ͜ΕΑΓɺ H(A) − H(AC) + H(B) − H(BC) ≤ 0
  37. 38 ͕੒Γཱͭɻ࠷ޙʹɺܥ D ΛՃ͑ͯɺ߹੒ܥ ABCD Λ७ਮঢ়ଶʹ͢ΔͱɺH(A) = H(BCD), H(AC) =

    H(BD) ͕੒ΓཱͭͷͰɺ H(BCD) − H(BD) + H(B) − H(BC) ≤ 0 ͕ಘΒΕΔɻ͜͜ͰɺB ˠ CɺC ˠ AɺD ˠ B ͱه߸Λஔ͖׵͑Δͱɺࣔ͢΂͖ؔ܎͕ ಘΒΕΔɻ ˙
  38. 39 ࢀߟจݙ [1]ʮQuantum Computation and Quantum Information: 10th Anniversary Edi-

    tionʯMichael A. Nielsen, Isaac L. ChuangʢஶʣCambridge University Press [2]ʮElements of Information Theory (2nd edition)ʯThomas M. Cover, Joy A. ThomasʢஶʣWiley-Interscience [3]ʮQuantum Information Theory (2nd edition)ʯMark M. WildeʢஶʣCambridge University Press