Upgrade to PRO for Only $50/Yearโ€”Limited-Time Offer! ๐Ÿ”ฅ

Class 11: Induction Practice

Avatar for David Evans David Evans
September 26, 2017
10k

Class 11: Inductionย Practice

cs2102: Discrete Mathematics
University of Virginia, Fall 2017

See course site for notes:
https://uvacs2102.github.io

Avatar for David Evans

David Evans

September 26, 2017
Tweet

More Decks by David Evans

Transcript

  1. Exam 1 is in class, Thursday, October 5. See todayโ€™s

    notes for details an preparation advice. Thursdayโ€™s class may be an exam review - read directions on notes carefully, feel free to collude to hit optimal result. Class 11: Induction Practice cs2102: Discrete Mathematics | F17 uvacs2102.github.io David Evans | University of Virginia
  2. Plan: All about Induction Induction Practice Induction in Practice Exam

    1 is in class, Thursday, October 5. See todayโ€™s notes for details an preparation advice. Before 6:59pm Wednesday, send topics you would like to review (read directions on notes carefully, feel free to collude to hit optimal result).
  3. Induction Principle To prove โˆ€ โˆˆ โ„•. : 1. Prove

    (0). 2. Prove โˆ€ โˆˆ โ„•. โŸน ( + 1). = 2|5|
  4. Induction Principle To prove โˆ€ โˆˆ โ„•. : 1. Prove

    (0). 2. Prove โˆ€ โˆˆ โ„•. โŸน ( + 1). To fit into exact induction principle: โˆ€ โˆˆ โ„•. โˆท=
  5. Induction Principle To prove โˆ€ โˆˆ โ„•. : 1. Prove

    (0). 2. Prove โˆ€ โˆˆ โ„•. โŸน ( + 1). Prove โˆ€ โˆˆ โ„•. pow โ„•: = 2:
  6. Prove by Induction: sum of first positive integers is :(:;<)

    = Induction Principle To prove โˆ€ โˆˆ โ„•. : 1. Prove (0). 2. Prove โˆ€ โˆˆ โ„•. โŸน ( + 1).
  7. Induction Principle To prove โˆ€ โˆˆ โ„•. : 1. Prove

    (0). 2. Prove โˆ€ โˆˆ โ„•. โŸน ( + 1). Prove that all non-empty finite subsets of โ„• have a minimum element. To fit into exact induction principle: โˆ€ โˆˆ โ„•. โˆท=
  8. Induction Principle To prove โˆ€ โˆˆ โ„•. : 1. Prove

    (0). 2. Prove โˆ€ โˆˆ โ„•. โŸน ( + 1). To fit into exact induction principle: โˆ€ โˆˆ โ„•. โˆท= all subsets of โ„• of size + 1 have a minimum element. More naturally: โˆ€ โˆˆ โ„•;. โˆท= all subsets of โ„• of size have a minimum element. Prove that all non-empty finite subsets of โ„• have a minimum element.
  9. Induction Principle To prove โˆ€ โˆˆ โ„•. : 1. Prove

    (0). 2. Prove โˆ€ โˆˆ โ„•. โŸน ( + 1). Started last class: prove that all non-empty finite subsets of โ„• have a minimum element. To fit into exact induction principle: โˆ€ โˆˆ โ„•. โˆท= all subsets of โ„• of size + 1 have a minimum element. More naturally: โˆ€ โˆˆ โ„•;. โˆท= all subsets of โ„• of size have a minimum element. Induction Principle+ To prove โˆ€ โˆˆ โ„•;. : 1. Prove (1). 2. Prove โˆ€ โˆˆ โ„•;. โŸน ( + 1). We can extend the induction principle to any well-ordered set with a โ€œ+ 1โ€ operation that covers all the elements!
  10. โˆ€ โˆˆ โ„•;. โˆท= all subsets of โ„• of size

    have a minimum element. Induction Principle+ To prove โˆ€ โˆˆ โ„•;. : 1. Prove (1). 2. Prove โˆ€ โˆˆ โ„•;. โŸน ( + 1). 1. Prove 1 . โ€œ โ€
  11. โˆ€ โˆˆ โ„•;. โˆท= all subsets of โ„• of size

    have a minimum element. Induction Principle+ To prove โˆ€ โˆˆ โ„•;. : 1. Prove (1). 2. Prove โˆ€ โˆˆ โ„•;. โŸน ( + 1). 2. Prove โˆ€ โˆˆ โ„•;. โŸน ( + 1).โ€œ โ€
  12. Take-Away Game Start with = 16 sticks Each turn: player

    must remove 1, 2, or 3 sticks Winner is player who takes the last stick Do you want to be Player 1 or Player 2?
  13. Prove: Always Ends Theorem. A Take-Away game with any initial

    number of sticks, โˆˆ โ„•;, ends.
  14. Prove: Always Ends Theorem. A Take-Away game with any initial

    number of sticks, โˆˆ โ„•;, ends.
  15. Charge Look at todayโ€™s notes (already posted) โ€“ Send requests

    for exam review by tomorrow PS5 Due Friday Exam 1 next Thursday (Oct 5)