19th International School on Foundations of Security Analysis and Design
Mini-course on "Trustworthy Machine Learning"
https://jeffersonswheel.org/fosad2019 David Evans
Tuesday (Tomorrow) Defenses Wednesday Privacy, Fairness, Abuse 1 Overall Goals: broad and whirlwind survey* of an exciting emerging research area explain a few of my favorite research results in enough detail to understand them at a high-level introduce some open problems that I hope you will work on and solve * but highly biased by my own interests
that misinterpreted what this individual posted. Even though our translations are getting better each day, mistakes like these might happen from time to time and we’ve taken steps to address this particular issue. We apologize to him and his family for the mistake and the disruption this caused.”
out of control AI inadvertently causes harm Malicious operators Build AI to do harm Malicious abuse of benign AI On Robots Joe Berger and Pascal Wyse (The Guardian, 21 July 2018)
harm (without creators objecting) Malicious developers Using AI to do harm 14 Malice is (often) in the eye of the beholder (e.g., mass surveillance, pop-up ads, etc.)
kind of instrument which will increase the power of the mind much more than optical lenses strengthen the eyes and which will be as far superior to microscopes or telescopes as reason is superior to sight.”
Bernoulli (Universitdt Basel, 1684) who advised: Johann Bernoulli (Universitdt Basel, 1694) who advised: Leonhard Euler (Universitat Basel, 1726) who advised: Joseph Louis Lagrange who advised: Simeon Denis Poisson who advised: Michel Chasles (Ecole Polytechnique, 1814) who advised: H. A. (Hubert Anson) Newton (Yale, 1850) who advised: E. H. Moore (Yale, 1885) who advised: Oswald Veblen (U. of Chicago, 1903) who advised: Philip Franklin (Princeton 1921) who advised: Alan Perlis (MIT Math PhD 1950) who advised: Jerry Feldman (CMU Math 1966) who advised: Jim Horning (Stanford CS PhD 1969) who advised: John Guttag (U. of Toronto CS PhD 1975) who advised: David Evans (MIT CS PhD 2000) my academic great- great-great-great- great-great-great- great-great-great- great-great-great- great-great- grandparent!
kind of instrument which will increase the power of the mind much more than optical lenses strengthen the eyes and which will be as far superior to microscopes or telescopes as reason is superior to sight.” Gottfried Wilhelm Leibniz (1679) Normal computing amplifies (quadrillions of times faster) and aggregates (enables millions of humans to work together) human cognitive abilities; AI goes beyond what humans can do.
precisely what the model should do, we wouldn’t need ML to do it! “Artificial Intelligence” means making computers do things their programmers don’t understand well enough to program explicitly.
precisely what the model should do, we wouldn’t need ML to do it! Best we hope for is verifying certain properties M 1 M 2 ∀": $% " = $' (") DeepXplore: Automated Whitebox Testing of Deep Learning Systems. Kexin Pei, Yinzhi Cao, Junfeng Yang, Suman Jana. SOSP 2017 Model Similarity
) " ≈ )(" + ∆) " " + ∆ . M .∗ Adversary’s Goal: find a “small” perturbation that changes model output targeted attack: in some desired way Defender’s Goal: Robust Model: find model where this is hard Detection: detect inputs that are adversarial
Greek gift’s free of treachery? Is that Ulysses’s reputation? Either there are Greeks in hiding, concealed by the wood, or it’s been built as a machine to use against our walls, or spy on our homes, or fall on the city from above, or it hides some other trick: Trojans, don’t trust this horse. Whatever it is, I’m afraid of Greeks even those bearing gifts.’ Virgil, The Aenid (Book II)
cat bird automobile airplane 60 000 images 32×32 pixels, 24-bit color human-labeled subset of images in 10 classes from Tiny Images Dataset Alex Krizhevsky [2009]
random starting point Follow gradient (first derivative): to minimize, negative direction ℒ′#,% (!) !) = !)+, − . / ∇ℒ#,% (!)+, ) Repeat many times, hopefully find global minimum
random starting point Follow gradient (first derivative): to minimize, negative direction ℒ′#,% (!) !) = !)+, − . / ∇ℒ#,% (!)+, ) Repeat many times, hopefully find global minimum To reduce computation, evaluate gradient of loss on randomly selected subset (“mini-batch”)
“panda” “gibbon” Example from: Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy. Explaining and Harnessing Adversarial Examples. 2014 (in ICLR 2015)
class in “Reality Space” (human perception) Given seed sample, !, !" is an adversarial example iff: # !" = % Class is % (targeted) or # !" ≠ #(!) Class is different (untargeted) ∆ !, !" ≤ , Similar to seed ! Difference below threshold
Cars”, Defcon-CAAD, 2018. Benign Malignant Melanoma Diagnosis Samuel G Finlayson et al. “Adversarial attacks on medical machine learning”, Science, 2019. Mahmood Sharif et al. “Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition”, ACM CCS, 2016. =
= 99.22) IMDB Movie Review Dataset Hilarious film, I had a great time watching it. The star (Cuneyt Arkin, sometimes credited as Steve Arkin) is a popular actor from Turkey. He has played in lots of tough-guy roles, epic-sword films, and romances. It was fun to see him with an international cast and some real lousy looking pair of gloves. If I remember it was also dubbed in English which made things even more funnier. (kinda like seeing John Wayne speak Turkish).
= 91.06) IMDB Movie Review Dataset Hilarious film, I had a great time watching it. The star (Cuneyt Arkin, sometimes credited as Steve Arkin) is a popular actor from Turkey. He has played in lots of tough-guy roles, epic-sword films, and romances. It was fun to see him with an international cast and some real lousy looking pair of gloves. If I remember it was also dubbed in English which made things even more funnier. (kinda like seeing John Wayne speak Turkish). movies Target: Negative (Confidence = 8.94)
= 92.28) IMDB Movie Review Dataset Hilarious film, I had a great time watching it. The star (Cuneyt Arkin, sometimes credited as Steve Arkin) is a popular actor from Turkey. He has played in lots of tough-guy roles, epic-sword films, and romances. It was fun to see him with an international cast and some real lousy looking pair of gloves. If I remember it was also dubbed in English which made things even more funnier. (kinda like seeing John Wayne speak Turkish). researching Target: Negative (Confidence = 7.72)
= 73.33) IMDB Movie Review Dataset Hilarious film, I had a great time watching it. The star (Cuneyt Arkin, sometimes credited as Steve Arkin) is a popular actor from Turkey. He has played in lots of tough-guy roles, epic-sword films, and romances. It was fun to see him with an international cast and some real lousy looking pair of gloves. If I remember it was also dubbed in English which made things even more funnier. (kinda like seeing John Wayne speak Turkish). researching Target: Negative movies
an adversarial example iff: # !" = % Class is % (targeted) or # !" ≠ #(!) Class is different (untargeted) ∆ !, !" ≤ , Similar to seed ! Difference below threshold ∆ -, -" is defined in some (simple!) metric space.
color, etc. NLP: word substitutions (synonym constraints) Semantic distance: ℬ "′) = ℬ(" Behavior we care about is the same Malware: it still behaves maliciously Vision: still looks like a “cat” to most humans We’ll get back to these...for now, let’s assume '( norms (like most research) despite flaws.
⋅ .(' + *)) such that (/ + *) ∈ 0, 1 3 Formulate optimization problem where . is defined objective function: . /4 ≥ 0 iff 7 /4 = 9 model output matches target Nicholas Carlini, David Wagner IEEE S&P 2017 Optimization problem that can be solved by standard optimizers Adam (SGD + momentum) [Kingman, Ba 2015]
malicious behavior find an adversarial example !" that satisfies: # !" = “&'()*(” Model misclassifies ℬ !′) = ℬ(! Malicious behavior preserved Generic attack: heuristically explore input space for !′ that satisfies definition. No requirement that ! ~ !′ except through ℬ.
threshold? Charles Smutz, Angelos Stavrou. When a Tree Falls: Using Diversity in Ensemble Classifiers to Identify Evasion in Malware Detectors. NDSS 2016. Classification Score Malware Seed (sorted by original score)
robust features that are strong signals for malware. 136 If you have features like this – don’t need ML! There are scenarios where adversarial training “works” [more tomorrow].