Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Artificial Intelligence: why should firms care?

Artificial Intelligence: why should firms care?

As I was reading an article about IBM Watson, a small sentence drew my attention: "Eighty or 90 per cent of these requests don't need Watson anyway, technology already exists for what they need.". This epitomizes the growing need for the business world to catch up with artificial intelligence's latest developments. What is AI? What is the state of the art? Why should I care? i.e. what can AI bring to the business world? From law to finance, any field will be reshaped in the long term by AI.

http://francky.me/publications.php#firm2012

Franck Dernoncourt

May 30, 2012
Tweet

More Decks by Franck Dernoncourt

Other Decks in Science

Transcript

  1. > Artificial Intelligence: why should firms care?
    May 30th, 2012
    @Swedish Chamber of Commerce in Paris
    [email protected]
    http://francky.me

    View Slide

  2. 2012-05-30 Franck Dernoncourt - http://francky.me
    2 Franck Dernoncourt
    2
    0) Foreword
    Video http://youtu.be/A9pMbRKq8Ro

    View Slide

  3. 2012-05-30 Franck Dernoncourt - http://francky.me
    3 Franck Dernoncourt
    3
    0) Foreword
    Why this presentation?
    Article on IBM Watson
    http://www.theinquirer.net/inquirer/news/2171838/ibm-protects-
    watson-ai-hungry-firms:
    "Eighty or 90 per cent of these requests don't need Watson
    anyway, technology already exists for what they need."

    View Slide

  4. 2012-05-30 Franck Dernoncourt - http://francky.me
    4
    Table of Contents
    1.AI > definitions
    2.AI > induction
    3.AI > deduction
    4.Conclusion & perspectives

    View Slide

  5. 2012-05-30 Franck Dernoncourt - http://francky.me
    5 Franck Dernoncourt
    5
    1) AI > definitions
    Intelligence
    The game of chess has always been viewed as an intellectual game
    par excellence:
    “a touchstone of the intellect” (Goethe)
    … IBM Deep Blue beat world champion Garry Kasparov in 1997.

    View Slide

  6. 2012-05-30 Franck Dernoncourt - http://francky.me
    6 Franck Dernoncourt
    6
    1) AI > definitions
    Intelligence
    No consensus on a formal definition of intelligence. Consensus on:
     Intelligence is the computational part of the ability to achieve goals
    in the world.
     Varying kinds and degrees of intelligence occur in people, many
    animals and some machines.

    View Slide

  7. 2012-05-30 Franck Dernoncourt - http://francky.me
    7 Franck Dernoncourt
    7
    1) AI > definitions
    Artificial Intelligence (AI)
    3 definitions:
    jmc: It is the science and engineering of making intelligent machines,
    especially intelligent computer programs. It is related to the similar task of
    using computers to understand human intelligence, but AI does not have to
    confine itself to methods that are biologically observable.

    View Slide

  8. 2012-05-30 Franck Dernoncourt - http://francky.me
    8 Franck Dernoncourt
    8
    1) AI > definitions
    Artificial Intelligence (AI)
    3 definitions:
    jmc: It is the science and engineering of making intelligent machines,
    especially intelligent computer programs. It is related to the similar task of
    using computers to understand human intelligence, but AI does not have to
    confine itself to methods that are biologically observable.
    Peter Norvig: We think of AI as understanding the world and deciding how
    to make good decisions. Dealing with uncertainty but still being able to
    make good decisions is what separates AI from the rest of computer
    science.

    View Slide

  9. 2012-05-30 Franck Dernoncourt - http://francky.me
    9 Franck Dernoncourt
    9
    1) AI > definitions
    Artificial Intelligence (AI)
    3 definitions:
    jmc: It is the science and engineering of making intelligent machines,
    especially intelligent computer programs. It is related to the similar task of
    using computers to understand human intelligence, but AI does not have to
    confine itself to methods that are biologically observable.
    Peter Norvig: We think of AI as understanding the world and deciding how
    to make good decisions. Dealing with uncertainty but still being able to
    make good decisions is what separates AI from the rest of computer
    science.
    comp.ai: AI can mean many things to many people. Much confusion arises
    because the word 'intelligence' is ill-defined. The phrase is so broad that
    people have found it useful to divide AI into two classes: strong AI and
    weak AI.

    View Slide

  10. 2012-05-30 Franck Dernoncourt - http://francky.me
    10 Franck Dernoncourt
    10
    1) AI > definitions
    Artificial Intelligence (AI)
     Weak AI simply states that some "thinking-like" features can be
    added to computers to make them more useful tools... and this has
    already started to happen (witness expert systems, drive-by-wire
    cars and speech recognition software).
     Strong AI makes the bold claim that computers can be made to
    think on a level (at least) equal to humans and possibly even be
    conscious of themselves.
    AI goal: Achieve strong AI (i.e. singularity).

    View Slide

  11. 2012-05-30 Franck Dernoncourt - http://francky.me
    11 Franck Dernoncourt
    11
    1) AI > definitions

    View Slide

  12. 2012-05-30 Franck Dernoncourt - http://francky.me
    12 Franck Dernoncourt
    12
    1) AI > definitions
    Artificial Intelligence (AI) – a brief history
    After WWII, a number of people independently started to work on
    intelligent machines.
    The English mathematician Alan Turing may have been the first. He
    gave a lecture on it in 1947. He also may have been the first to
    decide that AI was best researched by programming computers
    rather than by building machines.
    By the late 1950s, there were many researchers on AI, and most of
    them were basing their work on programming computers.

    View Slide

  13. 2012-05-30 Franck Dernoncourt - http://francky.me
    13
    Artificial Intelligence (AI)
     1 Problems
     1.1 Deduction, reasoning, problem solving
     1.2 Knowledge representation
     1.3 Planning
     1.4 Learning
     1.5 Natural language processing
     1.6 Motion and manipulation
     1.7 Perception
     1.8 Social intelligence
     1.9 Creativity
     1.10 General intelligence
     2 Approaches
     2.1 Cybernetics and brain simulation
     2.2 Symbolic
     2.3 Sub-symbolic
     2.4 Statistical
     2.5 Integrating the approaches
     3 Tools
     3.1 Search and optimization
     3.2 Logic
     3.3 Probabilistic methods for uncertain reasoning
     3.4 Classifiers and statistical learning methods
     3.5 Neural networks
     3.6 Control theory
     3.7 Programming languages for AI
    Franck Dernoncourt
    13
    1) AI > definitions

    View Slide

  14. 2012-05-30 Franck Dernoncourt - http://francky.me
    14 Franck Dernoncourt
    14
    1) AI > definitions
    Artificial Intelligence (AI)
    The big picture: induction vs. deduction
    Statistical AI, arising from machine learning, tends to be more
    concerned with "inductive" thought: given a set of patterns, induce
    the trend.
    Classical AI, on the other hand, is more concerned with "deductive"
    thought: given a set of constraints, deduce a conclusion.

    View Slide

  15. 2012-05-30 Franck Dernoncourt - http://francky.me
    15
    Table of contents
    1.AI > definitions
    2.AI > induction
    3.AI > deduction
    4.Conclusion & perspectives

    View Slide

  16. 2012-05-30 Franck Dernoncourt - http://francky.me
    16 Franck Dernoncourt
    16
    2) AI > induction
    Evolutionary algorithm:
    based on Darwin’s natural selection theory.

    View Slide

  17. 2012-05-30 Franck Dernoncourt - http://francky.me
    17 Franck Dernoncourt
    17
    2) AI > induction
    Evolutionary algorithm:
    Case study:
    SSgA manages institutional portfolios of very high value (from high millions
    $US to billions $US).
    Exploiting evolutionary algorithms to develop stock future valuation models in
    quantitative asset management.
    Members of the population are candidate stock future valuation models.

    View Slide

  18. 2012-05-30 Franck Dernoncourt - http://francky.me
    18 Franck Dernoncourt
    18
    2) AI > induction
    Evolutionary algorithm:
    Case study:
    SSgA manages institutional portfolios of very high value (from high millions
    $US to billions $US).
    Exploiting evolutionary algorithms to develop stock future valuation models in
    quantitative asset management.
    Members of the population are candidate stock future valuation models.
    E: analyst variables
    P: price momentum variables
    Q: quality variables
    V: valuation variables

    View Slide

  19. 2012-05-30 Franck Dernoncourt - http://francky.me
    19 Franck Dernoncourt
    19
    2) AI > induction
    E: analyst variables
    P: price momentum variables
    Q: quality variables
    V: valuation variables > Models assess stock future valuation

    View Slide

  20. 2012-05-30 Franck Dernoncourt - http://francky.me
    20 Franck Dernoncourt
    20
    2) AI > induction
    Evolutionary algorithm:
    based on Darwin’s natural selection theory.

    View Slide

  21. 2012-05-30 Franck Dernoncourt - http://francky.me
    21 Franck Dernoncourt
    21
    2) AI > induction
    Multi-objective:
    • Predict precisely stock future valuation
    • don’t take analysts too much into account
    • limit tree size (i.e. model complexity)
    • …

    View Slide

  22. 2012-05-30 Franck Dernoncourt - http://francky.me
    22 Franck Dernoncourt
    22
    2) AI > induction
    Multi-objective:
    • Predict precisely stock future valuation
    • don’t take analysts too much into account
    • limit tree size (i.e. model complexity)
    • …

    View Slide

  23. 2012-05-30 Franck Dernoncourt - http://francky.me
    23 Franck Dernoncourt
    23
    2) AI > induction
    Black box optimization:

    View Slide

  24. 2012-05-30 Franck Dernoncourt - http://francky.me
    24
    Table of Contents
    1.AI > definitions
    2.AI > induction
    3.AI > deduction
    4.Conclusion & perpectives

    View Slide

  25. 2012-05-30 Franck Dernoncourt - http://francky.me
    25 Franck Dernoncourt
    25
    AI > deduction
    AI > deduction:
    Case study: fuzzy logic

    View Slide

  26. 2012-05-30 Franck Dernoncourt - http://francky.me
    26 Franck Dernoncourt
    26
    AI > deduction
    AI > deduction:
    Case study: fuzzy logic

    View Slide

  27. 2012-05-30 Franck Dernoncourt - http://francky.me
    27
    3) AI > deduction
    Observation:
    Knowledge available to humans are virtually never perfect.
    These imperfections can be distinguished into two classes:
     Uncertainties, which refer to knowledge whose validity is subject to
    question. For example, if we know someone bumped his head on a ceiling,
    we can guess that he is likely to be very tall.
     Inaccuracies, which refer to knowledge that is not clearly perceived or
    defined. For example, instead of saying someone is 2 feet and 3 inches, we
    usually say that person is very tall.

    View Slide

  28. 2012-05-30 Franck Dernoncourt - http://francky.me
    28
    3) AI > deduction
    Observation:
    Knowledge available to humans are virtually never perfect.
    These imperfections can be distinguished into two classes:
    Uncertainties, which refer to knowledge whose validity is subject to
    question. For example, if we know someone bumped his head on a ceiling,
    we can guess that he is likely to be very tall.
     Inaccuracies, which refer to knowledge that is not clearly perceived or
    defined. For example, instead of saying someone is 2 feet and 3 inches,
    we usually say that person is very tall.

    View Slide

  29. 2012-05-30 Franck Dernoncourt - http://francky.me
    29
    3) AI > deduction
    Observation:
    Knowledge available to humans are virtually never perfect.
    These imperfections can be distinguished into two classes:
    Uncertainties, which refer to knowledge whose validity is subject to
    question. For example, if we know someone bumped his head on a ceiling,
    we can guess that he is likely to be very tall.
     Inaccuracies, which refer to knowledge that is not clearly perceived or
    defined. For example, instead of saying someone is 2 feet and 3 inches,
    we usually say that person is very tall.
    Probability!

    View Slide

  30. 2012-05-30 Franck Dernoncourt - http://francky.me
    30
    3) AI > deduction
    Observation:
    Knowledge available to humans are virtually never perfect.
    These imperfections can be distinguished into two
    classes:
    Uncertainties, which refer to knowledge whose validity is subject to
    question. For example, if we know someone bumped his head on a ceiling,
    we can guess that he is likely to be very tall.
    Inaccuracies, which refer to knowledge that is not clearly perceived or
    defined. For example, instead of saying someone is 2 feet and 3 inches,
    we usually say that person is very tall.
    Probability!

    View Slide

  31. 2012-05-30 Franck Dernoncourt - http://francky.me
    31
    3) AI > deduction
    Observation:
    Knowledge available to humans are virtually never perfect.
    These imperfections can be distinguished into two
    classes:
    Uncertainties, which refer to knowledge whose validity is subject to
    question. For example, if we know someone bumped his head on a ceiling,
    we can guess that he is likely to be very tall.
    Inaccuracies, which refer to knowledge that is not clearly perceived or
    defined. For example, instead of saying someone is 2 feet and 3 inches,
    we usually say that person is very tall.
    Probability!
    Fuzzy logic!

    View Slide

  32. 2012-05-30 Franck Dernoncourt - http://francky.me
    32
    3) AI > deduction
    How to express these inaccuracies in logical terms?
    In classical logic, a proposition is true or false.
    Example: This person is tall. True or false?
     Not flexible…
    In multivalued logic, a proposition may have multiple values.
    Example(ternary): This person is tall. True, half true ou false?
     Slightly more flexible…
    In fuzzy logic, a proposition can have as many values as one wants.
    Example: This person is tall. This is 30% true.
     Flexible!

    View Slide

  33. 2012-05-30 Franck Dernoncourt - http://francky.me
    33
    3) AI > deduction
    Fuzzy logic is an extension of the Boolean logic based on the mathematical
    theory of fuzzy sets, which is a generalization of the classical set theory.
    By introducing the notion of degree in the verification of a condition, thus
    enabling a condition of being in a state other than true or false, fuzzy logic
    provides a highly valuable flexibility to reasoning models, making it possible
    taking into account inaccuracies
    Lofti Zadeh, researcher in systems theory, laid the
    foundations of fuzzy logic in an article in 1965.

    View Slide

  34. 2012-05-30 Franck Dernoncourt - http://francky.me
    34
    3) AI > deduction

    View Slide

  35. 2012-05-30 Franck Dernoncourt - http://francky.me
    35
    3) AI > deduction
    Applications:
     Decision support system (e.g. in healthcare),
     Database (e.g. fuzzy queries),
     Fuzzy commands (e.g. subway line M14 in Paris),
     Data mining (e.g. clustering),
     Pattern recognition,
     …

    View Slide

  36. 2012-05-30 Franck Dernoncourt - http://francky.me
    36
    3) AI > deduction
    Let’s define the key concepts of fuzzy logic through an example of
    image processing: increasing the contrast of an image

    View Slide

  37. 2012-05-30 Franck Dernoncourt - http://francky.me
    37
    3) AI > deduction
    Fuzzy
    Knowledge base
    Fuzzifier
    Inference
    Engine
    Defuzzifier Output
    Input

    View Slide

  38. 2012-05-30 Franck Dernoncourt - http://francky.me
    38
    3) AI > deduction
    1) Fuzzy set and membership degree
    Classical set Fuzzy set
    Indicator function: 0 or 1
     Binary in classical logic
    Membership degree: any real between 0 et 1
    Membership degree in fuzzy logic
    (eg 0.867)
    Fuzzifier

    View Slide

  39. 2012-05-30 Franck Dernoncourt - http://francky.me
    39
    3) AI > deduction
    1) Fuzzy set and membership degree
    Classical logic Fuzzy logic
    Indicator function: 0 or 1
     Binary in classical logic
    Membership degree: any real between 0 et 1
    Membership degree in fuzzy logic
    (eg 0.867)
    Fuzzifier

    View Slide

  40. 2012-05-30 Franck Dernoncourt - http://francky.me
    40
    3) AI > deduction
    1) Membership functions (fuzzification step) in input Fuzzifier

    View Slide

  41. 2012-05-30 Franck Dernoncourt - http://francky.me
    41
    3) AI > deduction
    1) Membership functions (defuzzification step) in output Fuzzifier

    View Slide

  42. 2012-05-30 Franck Dernoncourt - http://francky.me
    42
    3) AI > deduction
    2) Redefinitions of basic operations
    Classical logic Fuzzy logic
    • Negation
    • And
    • Or
    • Implication
    • Modus ponens
    Inference
    Engine

    View Slide

  43. 2012-05-30 Franck Dernoncourt - http://francky.me
    43
    3) AI > deduction
    3) Decision matrix
    Power of fuzzy logic!
    A fuzzy system is expressed directly in
    natural language
    Very dark
    Dark
    Average
    Average
    Very light
    Light
    Output
    Input
    Inference
    Engine

    View Slide

  44. 2012-05-30 Franck Dernoncourt - http://francky.me
    44
    3) AI > deduction
    4) Defuzzification ! Defuzzifier

    View Slide

  45. 2012-05-30 Franck Dernoncourt - http://francky.me
    45
    3) AI > deduction
    Fuzzy
    Knowledge base
    Fuzzifier
    Inference
    Engine
    Defuzzifier Output
    Input
    Very dark
    Dark
    Average
    Average
    Very light
    Light
    Output
    Input

    View Slide

  46. 2012-05-30 Franck Dernoncourt - http://francky.me
    46
    3) AI > deduction
    Exemple 2 : Décision du montant du pourboire à l'issue d'un repas au
    restaurant, en fonction de la qualité du service ressentie ainsi que de la
    qualité de la nourriture.
    3 variables :
    • Input 1 : qualité du service. Sous-ensembles : mauvais, bon et excellent.
    • Input 2 : qualité de la nourriture. Sous-ensembles : exécrable et délicieux.
    • Output : montant du pourboire. Sous-ensembles : faible, moyen et élevé.
    Input 1 Input 2 Output 1

    View Slide

  47. 2012-05-30 Franck Dernoncourt - http://francky.me
    47
    3) AI > deduction
    3 variables :
    • Input 1 : qualité du service. Sous-ensembles : mauvais, bon et excellent.
    • Input 2 : qualité de la nourriture. Sous-ensembles : exécrable et délicieux.
    • Output : montant du pourboire. Sous-ensembles : faible, moyen et élevé.

    View Slide

  48. 2012-05-30 Franck Dernoncourt - http://francky.me
    48
    3) AI > deduction
    3 variables :
    • Input 1 : qualité du service. Sous-ensembles : mauvais, bon et excellent.
    • Input 2 : qualité de la nourriture. Sous-ensembles : exécrable et délicieux.
    • Output : montant du pourboire. Sous-ensembles : faible, moyen et élevé.

    View Slide

  49. 2012-05-30 Franck Dernoncourt - http://francky.me
    49
    3) AI > deduction
    3 variables :
    • Input 1 : qualité du service. Sous-ensembles : mauvais, bon et excellent.
    • Input 2 : qualité de la nourriture. Sous-ensembles : exécrable et délicieux.
    • Output : montant du pourboire. Sous-ensembles : faible, moyen et élevé.

    View Slide

  50. 2012-05-30 Franck Dernoncourt - http://francky.me
    50
    3) AI > deduction
    Règle 3
    Règle 2
    Règle 1
    alors le pourboire est élevé.
    Si le service est excellent ou la nourriture est délicieuse
    alors le pourboire est moyen
    Si le service est bon
    alors le pourboire est faible.
    Si le service est mauvais ou la nourriture est exécrable
    Service = 7.83
    Nourriture = 7.32
    Pourboire ??

    View Slide

  51. 2012-05-30 Franck Dernoncourt - http://francky.me
    51
    3) AI > deduction
    Règle 3
    Règle 2
    Règle 1
    alors le pourboire est élevé.
    Si le service est excellent ou la nourriture est délicieuse
    alors le pourboire est moyen
    Si le service est bon
    alors le pourboire est faible.
    Si le service est mauvais ou la nourriture est exécrable

    View Slide

  52. 2012-05-30 Franck Dernoncourt - http://francky.me
    52
    3) AI > deduction
    Règle 3
    Règle 2
    Règle 1
    alors le pourboire est élevé.
    Si le service est excellent ou la nourriture est délicieuse
    alors le pourboire est moyen
    Si le service est bon
    alors le pourboire est faible.
    Si le service est mauvais ou la nourriture est exécrable
    Défuzzification avec la méthode centre de gravité (COG)

    View Slide

  53. 2012-05-30 Franck Dernoncourt - http://francky.me
    53
    3) AI > deduction
    Règle 3
    Règle 2
    Règle 1
    alors le pourboire est élevé.
    Si le service est excellent ou la nourriture est délicieuse
    alors le pourboire est moyen
    Si le service est bon
    alors le pourboire est faible.
    Si le service est mauvais ou la nourriture est exécrable
    Ensemble des décisions d'un système
    se basant sur la logique classique
    Ensemble des décisions d'un système flou

    View Slide

  54. 2012-05-30 Franck Dernoncourt - http://francky.me
    54
    3) AI > deduction
    Règle 4
    Règle 3
    Règle 2
    Règle 1
    alors j'accélère.
    et si le feu est
    proche...
    si ma vitesse est
    faible...
    Si le feu est
    vert...
    alors je freine
    doucement.
    et si le feu est
    loin...
    si ma vitesse est
    moyenne...
    Si le feu est
    orange...
    alors je maintiens ma
    vitesse.
    et si le feu est
    loin...
    si ma vitesse est
    faible...
    Si le feu est
    rouge...
    alors je freine fort.
    et si le feu est
    proche...
    si ma vitesse est
    élevée...
    Si le feu est
    rouge...
    Exemple 3 : pilote automatique

    View Slide

  55. 2012-05-30 Franck Dernoncourt - http://francky.me
    55
    3) AI > deduction
    The decision-making chain

    View Slide

  56. 2012-05-30 Franck Dernoncourt - http://francky.me
    56
    Table of Contents
    1.AI > definitions
    2.AI > induction
    3.AI > deduction
    4.Conclusion & perspectives

    View Slide

  57. 2012-05-30 Franck Dernoncourt - http://francky.me
    57 Franck Dernoncourt
    57
    4) Conclusion & perspectives
    Conclusion:
    AI’s aim: Integrating the approaches.

    View Slide

  58. 2012-05-30 Franck Dernoncourt - http://francky.me
    58 Franck Dernoncourt
    58
    4) Conclusion & perspectives
    Conclusion:
    Regard AI as a toolset for your business needs.

    View Slide

  59. 2012-05-30 Franck Dernoncourt - http://francky.me
    59 Franck Dernoncourt
    59
    4) Conclusion & perspectives
    Do computer programs have IQs?
    jmc: No. IQ correlates well with various measures of success or
    failure in life, but making computers that can score high on IQ
    tests would be weakly correlated with their usefulness.
    However, some of the problems on IQ tests are useful challenges
    for AI.

    View Slide

  60. 2012-05-30 Franck Dernoncourt - http://francky.me
    60 Franck Dernoncourt
    60
    4) Conclusion & perspectives
    How far is AI from reaching human-level intelligence?
    When will it happen?
    jmc: Most AI researchers believe that new fundamental ideas are
    required, and therefore it cannot be predicted when human-level
    intelligence will be achieved.

    View Slide

  61. 2012-05-30 Franck Dernoncourt - http://francky.me
    61 Franck Dernoncourt
    61
    4) Conclusion & perspectives
    Conclusion:
    Are current computers the right kind of machine to be made
    intelligent?
    Yes and no.
    Yes: All computations that have been observed so far in human
    brains can be reproduced on computers.
    No: Yet some AI researchers consider the Von Neumann
    architecture as a computational and architectural bottleneck for
    AI. For example, IBM's SyNAPSE project aims to design
    computing chips that map closer human brain functions.

    View Slide

  62. 2012-05-30 Franck Dernoncourt - http://francky.me
    62 Franck Dernoncourt
    62
    4) Conclusion & perspectives
    Conclusion:
    Are computers fast enough to be intelligent?
    We don't know for we haven't yet figured out the right algorithms
    to compute intelligence. 

    View Slide

  63. 2012-05-30 Franck Dernoncourt - http://francky.me
    63 Franck Dernoncourt
    63
    4) Conclusion & perspectives
    10 important differences between brains and computers:
    1. Brains are analogue; computers are digital
    2. The brain uses content-addressable memory
    3. The brain is a massively parallel machine; computers are modular
    and serial
    4. Processing speed is not fixed in the brain; there is no system
    clock
    5. Short-term memory is not like RAM
    6. No hardware/software distinction can be made with respect to the
    brain or mind
    7. Synapses are far more complex than electrical logic gates
    8. Unlike computers, processing and memory are performed by the
    same components in the brain
    9. The brain is a self-organizing system
    10. Brains have bodies

    View Slide

  64. 2012-05-30 Franck Dernoncourt - http://francky.me
    64 Franck Dernoncourt
    64
    4) Conclusion & perspectives
    Conclusion:
    Can machines think?
    Edsger Dijkstra: Whether computers can think is like the question
    of whether submarines can swim. In English, we say submarines
    don’t swim, but we say aeroplanes do fly. In Russian, they say
    submarines do swim.

    View Slide

  65. 2012-05-30 Franck Dernoncourt - http://francky.me
    65 31/05/2012 Motion-induced blindness
    65
    Questions ? [email protected]

    View Slide