Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
知ろう! ShazamKit
Search
freddi(Yuki Aki)
June 28, 2021
Technology
1
220
知ろう! ShazamKit
freddi(Yuki Aki)
June 28, 2021
Tweet
Share
More Decks by freddi(Yuki Aki)
See All by freddi(Yuki Aki)
輝け俺のViewController 〜海外iOSカンファレンス登壇編〜
freddi
4
310
Deep Dive into "any" and "some"
freddi
3
1.5k
挑戦!ISUCON de Server-side Swift 〜タイムゾーンには気をつけろ〜
freddi
0
1.9k
意外と知られてないXcode13の新しい参照カウンタ最適化オプションの挙動
freddi
2
170
How to develop SIL Optimizer in Swift Language
freddi
0
370
SwiftコンパイラがSwiftで開発できるようになる話
freddi
3
660
Swift Optimizing at Compiler World
freddi
2
860
Recap Pointfree Vol. 1~3
freddi
1
860
社内版SwiftコンパイラにContributeするまで
freddi
0
120
Other Decks in Technology
See All in Technology
Amazon Quick Suite で始める手軽な AI エージェント
shimy
0
370
1人1サービス開発しているチームでのClaudeCodeの使い方
noayaoshiro
2
430
マイクロサービスへの5年間 ぶっちゃけ何をしてどうなったか
joker1007
16
6.6k
AWS運用を効率化する!AWS Organizationsを軸にした一元管理の実践/nikkei-tech-talk-202512
nikkei_engineer_recruiting
0
110
AI駆動開発における設計思想 認知負荷を下げるフロントエンドアーキテクチャ/ 20251211 Teppei Hanai
shift_evolve
PRO
2
430
Amazon Bedrock Knowledge Bases × メタデータ活用で実現する検証可能な RAG 設計
tomoaki25
4
400
AWS Security Agentの紹介/introducing-aws-security-agent
tomoki10
0
320
SQLだけでマイグレーションしたい!
makki_d
0
1.1k
【U/day Tokyo 2025】Cygames流 最新スマートフォンゲームの技術設計 〜『Shadowverse: Worlds Beyond』におけるアーキテクチャ再設計の挑戦~
cygames
PRO
2
750
プロンプトやエージェントを自動的に作る方法
shibuiwilliam
13
12k
Lookerで実現するセキュアな外部データ提供
zozotech
PRO
0
170
20251219 OpenIDファウンデーション・ジャパン紹介 / OpenID Foundation Japan Intro
oidfj
0
170
Featured
See All Featured
Getting science done with accelerated Python computing platforms
jacobtomlinson
0
70
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
180
Agile that works and the tools we love
rasmusluckow
331
21k
Tell your own story through comics
letsgokoyo
0
740
Fireside Chat
paigeccino
41
3.7k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.7k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
75
Transcript
Ζ͏4IB[BN,JU :VLJ"LJ :6.&.*TXJGUGFBU)","5"TXJGUʙ88%$3FDBQʙ
ࣗݾհ GSFEEJ!@@@GSFEEJ@@@ ԬͰJ04ΤϯδχΞΛ͍ͯ͠·͢ ձࣾͰ1PEDBTUͬͯ·͢ʂ IUUQTMGLEFWQPETMJOFDPSQDPN
ࠓ͢͜ͱ 4IB[BN"QQ4IB[BN,JUͰͰ͖Δ͜ͱɾ࣮ݧ 4IB[BN,JUͷΈ͍ΈͪͳͲ ࠓ͞ͳ͍͜ͱ 4IB[BN,JUͷίʔυͷղઆ
ɺͭͷΞϓϦ͕"QQMFʹങऩ͞Εͨ
4IB[BN ԻָΛݕࡧ͢ΔͨΊͷΞϓϦ ݱࡏ"QQMFͷࢠձࣾͰ͋Δ 4IB[BN&OUFSUBJONFOU-JNJUFE ʹΑͬͯ։ൃɾఏڙ͞Ε͍ͯΔ ରԠϓϥοτϗʔϜ"OESPJEJ04ͳͲ
ʠԻָΛݕࡧ͢ΔͨΊͷΞϓϦʡ
ྗΛࢼͯ͠ΈΔ͜ͱʹ
࣮ݧϋϛϯάɾՎͷਫ਼
˞ஶ࡞ݖอޢͷ؍͔ΒԻফ͍ͯ͠·͢
͋Εɺແཧͩͬͨʢ͜Εࢲ͕Իஒͳ͚͔ͩʁʣ ˞ਖ਼ղӉଟాώΧϧͷ#FBVUJGVM8PSME
࣮ݧ"QQMF.VTJDͰఏڙ͞Ε͍ͯΔָۂΛ εϐʔΧʔͰྲྀͯ͠ΈΔ
˞ஶ࡞ݖอޢͷ؍͔ΒԻফ͍ͯ͠·͢
ਖ਼ղͩ͠ ͍͢͝ૣ͍ʢඵҎʙඵ͘Β͍ʣ ˞ਖ਼ղ%"0,0ͷ4IJCVZB,
࣮ݧ"QQMF.VTJDͰఏڙ͞Εͯͳ͍χονͳۂΛ εϐʔΧʔͰྲྀͯ͠ΈΔ
˞ஶ࡞ݖอޢͷ؍͔ΒԻফ͍ͯ͠·͢
ແཧͩͬͨ ˞ਖ਼ղΰϜͷࢥ͍ग़͓ͬͤ͘Μ·Μʂ
࣮ݧ"QQMF.VTJDͰఏڙ͞Ε͍ͯΔָۂͰ ΊͬͪΌΠϯτϩ͕ࣅ͍ͯΔۂ
͋ΔָۂͱͦͷΧόʔۂͰઓͯ͠ΈΔ
ͦͷ̍
˞ஶ࡞ݖอޢͷ؍͔ΒԻফ͍ͯ͠·͢
ͳΜ͔ඵͰग़͖ͯͨΜ͕ ˞ਖ਼ղ:.0ͷ/JDF"HF
ͦͷ̎
˞ஶ࡞ݖอޢͷ؍͔ΒԻফ͍ͯ͠·͢
࠷ॳͷ΄΅ಉ͡ͳͷʹΠϯτϩऴΘΔલʹਖ਼ղ ͔͠ΧόʔΞʔςΟετ·Ͱɾɾɾ ˞ਖ਼ղ).0ͱ͔ͷதͷਓͷ/JDF"HF
࣮ݧ݁Ռ·ͱΊ ϋϛϯάͱ͔ଟ͍ͯͳ͍ ϋϛϯάͱ͔͡Όͳͯ͘Իݯͦͷ·· ͩͬͨΒ͍͢͝ผͯ͘͠ΕΔ ˞"QQMF.VTJD %# ʹ͋ΔͷͷΈ ΄΅ಉ͡Α͏ͳΧόʔͱ͔ผͭ͘ ˞࣮ݧͱ͍͏ʹαϯϓϧ͕গͳ͍ͷͰҙɻ͖ʹͳΔͳΒΞϓϦPS4IB[BNLJUΛࣗ͝ͰνΣοΫ
4IB[BNݫີʹԻָΛݕࡧ͢ΔͨΊͷΞϓϦ
4IB[BN,JUݫີʹԻΛݕࡧ͢ΔͨΊͷϥΠϒϥϦ
4IB[BN,JU ԻָΛݕࡧ͢ΔͨΊͷϥΠϒϥϦ 88%$Ͱൃද͞Εͨ ରԠϓϥοτϗʔϜ"OESPJEJ04ͳͲ ˞"OESPJEIUUQTEFWFMPQFSBQQMFDPNEPXOMPBEBMM RTIB[BN͔Β
4IB[BN,JUͷͰ͖Δ͜ͱɾͦ͏͡Όͳ͍͜ͱ
4IB[BN,JUͰͰ͖Δ͜ͱ "QQMF.VTJDͷσʔλΛར༻ָͨ͠ۂϚονϯά ࣗ࡞ԻσʔλϕʔεΛར༻ͨ͠ԻϚονϯά ଟ͘ͷϊΠζͷ͋ΔԻ͔Βదʹ݁ՌͱϚονϯάॲཧ ্هΛ"OESPJEJ04྆ϓϥοτϗʔϜͷࣗͷΞϓϦʹΈࠐΉ
4IB[BN,JUͰଟ͍ͯͳ͍͜ͱ "QQMF.VTJDʹͳָ͍ۂͷϚονϯά Ի͡Όͳ͍Իͷݕ ΞυϦϒͱ͔ɺࢺΛಡΜͩ͜ͱͷݕ ˞ͨͿΜ͜͜4JSJ,JUͱ͔.-,JUͷൣᙝ
4IB[BN,JUͰଟ͍ͯͳ͍͜ͱ ˞'SPNIUUQTEFWFMPQFSBQQMFDPNWJEFPTQMBZXXED
4IB[BN,JUͷσʔλϕʔε ʮΧλϩάʯͱΑΕΔσʔλϕʔεΛར༻ͯ͠Ϛονϯά ΧλϩάԻ͔Βѹॖɾม͞Εͨʮγάωνϟʴϝλσʔλʯͷू߹ Χλϩάࣗ࡞ՄೳʢαϯϓϧΞϓϦ͋Γʣ
4IB[BN,JUͷσʔλϕʔε ˞'SPNIUUQTEFWFMPQFSBQQMFDPNWJEFPTQMBZXXED
4IB[BN,JUͷϑϩʔ Իͨ͠ԻͳͲγάωνϟʹม͞ΕɺΧλϩάʹϚονϯάʹ͔͚Δ ݁Ռͱͯ͠ग़͞ΕͨγάωνϟͷϝλσʔλΛ݁Ռͱͯ͠ग़͢ ˞'SPNIUUQTEFWFMPQFSBQQMFDPNWJEFPTQMBZXXED
4IB[BN,JUͷγάωνϟͷྫ ˞'SPNIUUQTEFWFMPQFSBQQMFDPNEPDVNFOUBUJPOTIB[BNLJU
4IB[BN,JUͷΧλϩάͷ࡞Γํ ਖ਼υΩϡϝϯτݟΔΑΓҎԼͷHJTUΛಈ͔ͨ͠΄͏͕ૣͦ͏ IUUQTHJTUHJUIVCDPNKB[[ZDIBEFFDFBCFGBGEDB
4IB[BN,JUͷΞϓϦͷԠ༻
88%$Ͱͷ&YBNQMF ͔ΜͨΜͳܭࢉΛ͓͑͠Δڭҭ༻ΞϓϦ αϯϓϧίʔυެ։ΞϦ ϏσΦͱԻΛͬͯಈ࡞ͷಉظΛͱΔ ˞'SPNIUUQTEFWFMPQFSBQQMFDPNTIB[BNLJU
4IB[BN,JUͷڧΈ ԻݕࡧͷΠϯϑϥΛΞϓϦʹఏڙ͢ΔͨΊͷϥΠϒϥϦ 88%$ͷαϯϓϧͷΑ͏ͳʮԻʹΑΔΞϓϦͷಉظʯ͕Θ͔Γқ͍ྫ ҟԻݕͳͲ͍͍ͯͳ͍ɻͦΕ.-,JUͷൣᙝ
ॾҙ
4IB[BN,JUͷҙ J04Ҏ߱ٴͼNBD04Ҏ߱ͷΈ 4IB[BN,JUʹؔͯ͠ɺ)*(ʹࡉ͔͍هࡌ͋Γ IUUQTEFWFMPQFSBQQMFDPNEFTJHOIVNBOJOUFSGBDFHVJEFMJOFTJPTBQQ BSDIJUFDUVSFBDDFTTJOHVTFSEBUBVTJOHUIFNJDSPQIPOFJOBTIB[BNLJUBQQ 4IB[BN,JUར༻$FSUJGJDBUFT *EFOUJGJFST1SPGJMFTͷมߋ͕ඞਢ
·ͱΊ
4IB[BN,JUͷ·ͱΊ ԻݕࡧͷΠϯϑϥΛΞϓϦʹఏڙ͢ΔͨΊͷϥΠϒϥϦ ܾ·ͬͨԻͷϚονϯά͕ڧΈɺ.-,JUͱదʹ͍͚ͨ΄͏͕͍͍ J04"OESPJEͰར༻Մೳ
એ
1PEDBTUͬͯ·͢ʂ IUUQTMGLEFWQPETMJOFDPSQDPN
J$POGʹͯొஃ͠·͢ IUUQTHFFLMFVTJPT