Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Storm: the Hadoop of Realtime Stream Processing
Search
Gabriel Grant
March 25, 2012
Programming
2
1.3k
Storm: the Hadoop of Realtime Stream Processing
Twitter's new scalable, fault-tolerant, and simple(ish) stream programming system... with Python!
Gabriel Grant
March 25, 2012
Tweet
Share
More Decks by Gabriel Grant
See All by Gabriel Grant
Painting Rainbows: Building Bridges in the Cloud
gabrielgrant
1
220
Other Decks in Programming
See All in Programming
SODA - FACT BOOK(JP)
sodainc
1
9.2k
オンデバイスAIとXcode
ryodeveloper
0
400
AkarengaLT vol.38
hashimoto_kei
1
140
EMこそClaude Codeでコード調査しよう
shibayu36
0
610
PyCon mini 東海 2025「個人ではじめるマルチAIエージェント入門 〜LangChain × LangGraphでアイデアを形にするステップ〜」
komofr
3
700
Dive into Triton Internals
appleparan
0
450
contribution to astral-sh/uv
shunsock
0
580
ボトムアップの生成AI活用を推進する社内AIエージェント開発
aku11i
0
1.5k
エンジニアインターン「Treasure」とHonoの2年、そして未来へ / Our Journey with Hono Two Years at Treasure and Beyond
carta_engineering
0
490
Vueのバリデーション、結局どれを選べばいい? ― 自作バリデーションの限界と、脱却までの道のり ― / Which Vue Validation Library Should We Really Use? The Limits of Self-Made Validation and How I Finally Moved On
neginasu
3
1.8k
CSC305 Lecture 14
javiergs
PRO
0
230
CSC305 Lecture 13
javiergs
PRO
0
370
Featured
See All Featured
Raft: Consensus for Rubyists
vanstee
140
7.2k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.7k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Building Applications with DynamoDB
mza
96
6.7k
Documentation Writing (for coders)
carmenintech
76
5.1k
A Modern Web Designer's Workflow
chriscoyier
697
190k
BBQ
matthewcrist
89
9.9k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Fireside Chat
paigeccino
41
3.7k
Transcript
STORM Keeping it Real(time) Since 2011
HELLO.
dotCloud.com
DATA
DATA
MEGA-DATA
VERSION ONE
VERSION TWO
VERSION TWO
VERSION THREE
JOY
VERSION FOUR?
ENTER, STORM
REAL-TIME COMPUTATION
DISTRIBUTED RPC & STREAM PROCESSING
HISTORY
STREAM PROCESSING
STORM:REAL-TIME HADOOP:BATCH
WOW
HIGH VOLUME
CONTINUOUS
CONTINUOUS
FAULT TOLERANT
DOESN'T
PERSIST
PROCESS BATCHES RELIABLY
PROTECT AGAINST HUMAN ERROR
PROTECT AGAINST HUMAN ERROR
THREE CORE ELEMENTS
SPOUTS
STREAMS
BOLTS
TOPOLOGIES
TASKS
TASKS
OUTPUT ROUTING?
STREAM GROUPINGS
SHUFFLE GROUPING
FIELDS GROUPING
ALL GROUPING
GLOBAL GROUPING
DOWN 'N DIRTY
GATEWAYS
GATEWAYS
REAL-TIME GEOCODE BUCKETED CLIENT UPDATE
THE TOPOLOGY
THE TOPOLOGY
CODE TIME: START ECLIPSE
WAIT, WHAT?!
MULTILANG API
I'VE GOT YOU COVERED
UMBRELLA: IT PROTECTS YOU FROM STORM
THE TOPOLOGY
I'VE GOT YOU COVERED class RedisSpout(JVMSpout): class Default(Stream): fields =
'message' jvm_class = 'yieldbot.storm.spout'
I'VE GOT YOU COVERED class LogParserBolt(AutoAckBolt): class Default(Stream): fields =
'ip_address' def execute(self, input): ip_address = parse_log(input.message) self.emit(ip_address)
I'VE GOT YOU COVERED class GeolocatorBolt(AutoAckBolt): class Default(Stream): fields =
'lat', 'long' def __init__(self, *args, **kwargs): self.geoip = pygeoip.GeoIP('GeoLiteCity.dat') super(GeolocatorBolt, self) \ .__init__(*args, **kwargs) def execute(self, input): record = self.geoip.record_by_addr(input.ip) lat = record['latitude'] long_ = record['longitude'] self.emit((lat, long_))
I'VE GOT YOU COVERED class WSPuserBolt(Bolt): def __init__(self, *args, **kwargs):
self.batcher = TimeBatcher() self.pusher = zerorpc.Client(timeout=None) url = os.environ['WSPUSHER_ZERORPC_URL'] self.wspusher.connect(url) super(WSPusherBolt, self).__init__(*args, **kwargs def execute(self, input): t = time() batch = self.pop_batch(t) if batch: self.wspusher.push_list(batch) data = input.lat, input.long self.batcher.push_item(t, data)
I'VE GOT YOU COVERED class GeocoderTopology(Topology): # components redis =
RedisSpout(1) parser = LogParserBolt(3) geolocator = GeolocatorBolt(2) pusher = WSPuserBolt(4) # plumbing parser.inputs.append(ShuffleGrouping(redis)) geolocator.inputs.append(ShuffleGrouping(parser)) pusher.inputs.append( FieldsGrouping(geolocator, 'lat', 'long'))
INSIDE THE MACHINE
THREE COMPONENTS
NIMBUS
ZOOKEEPER CLUSTER
WORKER NODES
DETAILS
DEPLOYMENT
EC2?
DOTCLOUD!
$ git clone \ https://github.com/gabrielgrant/storm-on-dotcloud.git $ dotcloud push mystorm storm-on-dotcloud
… $ dotcloud scale worker=3
TESTING
JAVA
CLOJURE
ANT MAVEN
LINEINGEN
SCALING
WHEN
HOW
THE FUTURE: EASY & AUTO
THANKS!
GABRIEL GRANT @gabrielmgrant gabrielgrant.ca