Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Storm: the Hadoop of Realtime Stream Processing
Search
Gabriel Grant
March 25, 2012
Programming
3
1.3k
Storm: the Hadoop of Realtime Stream Processing
Twitter's new scalable, fault-tolerant, and simple(ish) stream programming system... with Python!
Gabriel Grant
March 25, 2012
Tweet
Share
More Decks by Gabriel Grant
See All by Gabriel Grant
Painting Rainbows: Building Bridges in the Cloud
gabrielgrant
1
220
Other Decks in Programming
See All in Programming
C++20 射影変換
faithandbrave
0
500
A2A プロトコルを試してみる
azukiazusa1
2
730
GoのWebAssembly活用パターン紹介
syumai
3
10k
Gleamという選択肢
comamoca
6
740
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
41
27k
無関心の谷
kanayannet
0
180
ReadMoreTextView
fornewid
1
450
Javaのルールをねじ曲げろ!禁断の操作とその代償から学ぶメタプログラミング入門 / A Guide to Metaprogramming: Lessons from Forbidden Techniques and Their Price
nrslib
3
2k
Kotlin エンジニアへ送る:Swift 案件に参加させられる日に備えて~似てるけど色々違う Swift の仕様 / from Kotlin to Swift
lovee
1
240
GraphRAGの仕組みまるわかり
tosuri13
7
440
Is Xcode slowly dying out in 2025?
uetyo
1
140
赤裸々に公開。 TSKaigiのオフシーズン
takezoux2
0
140
Featured
See All Featured
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Code Reviewing Like a Champion
maltzj
524
40k
The Cost Of JavaScript in 2023
addyosmani
51
8.4k
Designing Experiences People Love
moore
142
24k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
32
5.9k
4 Signs Your Business is Dying
shpigford
184
22k
GitHub's CSS Performance
jonrohan
1031
460k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
It's Worth the Effort
3n
184
28k
For a Future-Friendly Web
brad_frost
179
9.8k
Transcript
STORM Keeping it Real(time) Since 2011
HELLO.
dotCloud.com
DATA
DATA
MEGA-DATA
VERSION ONE
VERSION TWO
VERSION TWO
VERSION THREE
JOY
VERSION FOUR?
ENTER, STORM
REAL-TIME COMPUTATION
DISTRIBUTED RPC & STREAM PROCESSING
HISTORY
STREAM PROCESSING
STORM:REAL-TIME HADOOP:BATCH
WOW
HIGH VOLUME
CONTINUOUS
CONTINUOUS
FAULT TOLERANT
DOESN'T
PERSIST
PROCESS BATCHES RELIABLY
PROTECT AGAINST HUMAN ERROR
PROTECT AGAINST HUMAN ERROR
THREE CORE ELEMENTS
SPOUTS
STREAMS
BOLTS
TOPOLOGIES
TASKS
TASKS
OUTPUT ROUTING?
STREAM GROUPINGS
SHUFFLE GROUPING
FIELDS GROUPING
ALL GROUPING
GLOBAL GROUPING
DOWN 'N DIRTY
GATEWAYS
GATEWAYS
REAL-TIME GEOCODE BUCKETED CLIENT UPDATE
THE TOPOLOGY
THE TOPOLOGY
CODE TIME: START ECLIPSE
WAIT, WHAT?!
MULTILANG API
I'VE GOT YOU COVERED
UMBRELLA: IT PROTECTS YOU FROM STORM
THE TOPOLOGY
I'VE GOT YOU COVERED class RedisSpout(JVMSpout): class Default(Stream): fields =
'message' jvm_class = 'yieldbot.storm.spout'
I'VE GOT YOU COVERED class LogParserBolt(AutoAckBolt): class Default(Stream): fields =
'ip_address' def execute(self, input): ip_address = parse_log(input.message) self.emit(ip_address)
I'VE GOT YOU COVERED class GeolocatorBolt(AutoAckBolt): class Default(Stream): fields =
'lat', 'long' def __init__(self, *args, **kwargs): self.geoip = pygeoip.GeoIP('GeoLiteCity.dat') super(GeolocatorBolt, self) \ .__init__(*args, **kwargs) def execute(self, input): record = self.geoip.record_by_addr(input.ip) lat = record['latitude'] long_ = record['longitude'] self.emit((lat, long_))
I'VE GOT YOU COVERED class WSPuserBolt(Bolt): def __init__(self, *args, **kwargs):
self.batcher = TimeBatcher() self.pusher = zerorpc.Client(timeout=None) url = os.environ['WSPUSHER_ZERORPC_URL'] self.wspusher.connect(url) super(WSPusherBolt, self).__init__(*args, **kwargs def execute(self, input): t = time() batch = self.pop_batch(t) if batch: self.wspusher.push_list(batch) data = input.lat, input.long self.batcher.push_item(t, data)
I'VE GOT YOU COVERED class GeocoderTopology(Topology): # components redis =
RedisSpout(1) parser = LogParserBolt(3) geolocator = GeolocatorBolt(2) pusher = WSPuserBolt(4) # plumbing parser.inputs.append(ShuffleGrouping(redis)) geolocator.inputs.append(ShuffleGrouping(parser)) pusher.inputs.append( FieldsGrouping(geolocator, 'lat', 'long'))
INSIDE THE MACHINE
THREE COMPONENTS
NIMBUS
ZOOKEEPER CLUSTER
WORKER NODES
DETAILS
DEPLOYMENT
EC2?
DOTCLOUD!
$ git clone \ https://github.com/gabrielgrant/storm-on-dotcloud.git $ dotcloud push mystorm storm-on-dotcloud
… $ dotcloud scale worker=3
TESTING
JAVA
CLOJURE
ANT MAVEN
LINEINGEN
SCALING
WHEN
HOW
THE FUTURE: EASY & AUTO
THANKS!
GABRIEL GRANT @gabrielmgrant gabrielgrant.ca