の機械学習スタック 幅広く完全な機械学習のサービス群 コンピュータ ビジョン 音声 テキスト 検索 NEW チャットボット パーソナライズ 予測 不正検知 NEW 開発 NEW コンタクトセンターNEW Amazon SageMaker Ground Truth Augmented AI SageMaker Neo Built-in algorithms SageMaker Notebooks NEW SageMaker Experiments NEW Model tuning SageMaker Debugger NEW SageMaker Autopilot NEW Model hosting SageMaker Model Monitor NEW Deep Learning AMIs & Containers GPUs & CPUs Elastic Inference Inferentia FPGA Amazon Rekognition Amazon Polly Amazon Transcribe +Medical Amazon Comprehend +Medical Amazon Translate Amazon Lex Amazon Personalize Amazon Forecast Amazon Fraud Detector Amazon CodeGuru AI サービス ML サービス 深層学習フレームワーク & インフラ Amazon Textract Amazon Kendra Contact Lens For Amazon Connect SageMaker Studio IDE NEW NEW
Airflow にも SageMaker Operator が用意されている • Python で記述した DAG (有向非巡回グラフ) でワークフロー管理 • Amazon SageMaker とのインテグレーションも • EC2 + RDS は別途必要 (マネージドサービスではない) Raw data Cleaned data Train data Test data Amazon SageMaker Training / HPO Model artifact Amazon SageMaker Batch transform Airflow DAG Filter long-tailed data sparse data format → RecordIO protobuf Analyze model performance based on test data Operator PythonOperator PythonOperator SageMakerTrainOperator/ SageMakerTransformOperator PythonOperator SageMakerTuningOperator Blog: https://aws.amazon.com/jp/blogs/news/build-end-to-end-machine-learning-workflows-with-amazon-sagemaker-and-apache-airflow/ Prediction results
SageMaker Neo トレーニング済のモデルをコンパイルし、様々な環境で動作 K E Y F E A T U R E S Neo-AI デバイスランタイム・コンパイラはオープンソース (Apache license 2.0) ランタイムは DL フレームワークの 1/10 のサイズ https://github.com/neo-ai/