Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Cool Math for Hot Music 輪読会 Sec.19

Cool Math for Hot Music 輪読会 Sec.19

Ryo Sakuma

July 25, 2021
Tweet

More Decks by Ryo Sakuma

Other Decks in Science

Transcript

  1. HASH 2021-07-26
    19. Group Actions, Subgroups, Quotients, and
    Products (Part 1)
    Cool Math for Hot Music ྠಡձ

    View Slide

  2. ໨ඪ
    1. Իָͷ Example ʹ͓͚ΔओுΛཧղ
    2. GIS ͷ֓೦Λײ֮Ͱ௫Ή
    3. Fig. 19.4 ͷҙຯΛཧղ

    View Slide

  3. େ·͔ͳྲྀΕ
    1. ಋೖɿָཧͷྺ࢙ §2
    2. Lewin ͷཧ࿦ͱ܈࡞༻ §19.1
    3. يಓʹΑΔྨผͱ࿨Իͷ෼ྨ §19.2.1
    4. ޙষʹඞཁͳ஌ࣝ §19.1 & §19.2

    View Slide

  4. 1. ಋೖɿָཧͷྺ࢙

    View Slide

  5. • (1517-1590) G. Zarlino: ࡾ౓ԻఔͷීٴͳͲ
    • (1722) J. P. Rameau: ࿨੠࿦
    • (1739) L. Euler: ࿨ԻͷάϥϑʢTonnetz, Euler spaceʣΛൃ໌
    • (1893) H. Riemann: ػೳ࿨੠࿦
    • (1970) Berklee College of Music ։ߍ
    • (1973) A. Forte: American Set Theory ͷᅘ໼
    • (1987) D. Lewin: Transformation Theory Λఏএ
    • (1990) H. Klumpenhouwer: Klumpenhouwer Network Λൃ໌
    1. ಋೖɿָཧͷྺ࢙

    View Slide

  6. • Lewin ҎલɿԻָతର৅ͦΕࣗମΛॏࢹ
    • ྫɿC Major key ʹ͓͍ͯɺG7 ͸υϛφϯτ
    • LewinɿԻָతର৅͕ A → B ͱભҠ͢Δࡍͷաఔɾม׵Λॏࢹ
    • ྫɿC Major key ʹ͓͍ͯɺCM7 → G7 ͷʮաఔʯ͸υϛφϯτม׵
    • ࿨ԻʹݶΒͣɺ༷ʑͳԻָతର৅ͷมԽաఔΛؔ਺ɾ܈ͱͯ͠ߟ͑Δͷ͕ Lewin ͷ
    "Transformation Theory"
    • Lewin ͷߟ͑ํ͸ɺָཧͷྺ࢙ʹ͓͚ΔҰछͷʮύϥμΠϜγϑτʯ
    1. ಋೖɿָཧͷྺ࢙

    View Slide

  7. 2. Lewin ͷཧ࿦ͱ܈࡞༻

    View Slide

  8. • ̇Example 46 લ൒
    • Lewin ͷ "Transformation Theory" ʹ͓͚Δ࠷ॳͷ࢓ࣄ͸ɺԻఔͷ֓೦ΛҰൠԽͨ͠
    "Generalized Interval System (GIS)" ͷఏএ
    • ௨ৗͷʮԻఔʯΛ࢖ͬͨ GIS ͷྫɿ
    2. Lewin ͷཧ࿦ͱ܈࡞༻
    C
    C#
    D

    E
    F
    F#
    G

    A

    B
    Իָతର৅ͷू߹ S = { C, C#, ..., B }
    int(C, E) + int(E, G) = int(C, G) ... ݁߹ଇ͕੒Γཱͭ
    int(C, E) = 4 ͸ C Λ 4 ൒Ի্͛Δʮ࡞༻ʯͱΈͳͤΔ
    int(s, t) ͸ԋࢉ + (mod 12) Ͱ܈Λͳ͢
    ܈Λ IVLS ͱ͓͘ͱɺؔ਺ int : S × S → IVLS
    GIS ͸ (S, IVLS, int)
    int(C, E) = 4
    int(E, G) = 3
    ԻఔΛଌΔؔ਺ int(C, E) = 4, int(E, G) = 3, int(C, G) = 7

    View Slide

  9. • ̇Example 46 લ൒
    • Իָతର৅ͷू߹ S ΍ɺԻఔΛଌΔؔ਺ int Λ͏·͘ม͑ͯ͋͛Ε͹ɺଞʹ΋৭ʑͳաఔɾมԽ
    ΛදݱͰ͖Δʢ࿨ԻɺϦζϜɺetc.ʣ
    • ͏·͘ม͑ͯ 㱻 ݁߹ଇ΍աఔͷҰҙੑͳͲʢޙड़ʣ
    2. Lewin ͷཧ࿦ͱ܈࡞༻
    C
    C#
    D

    E
    F
    F#
    G

    A

    B
    Իָతର৅ͷू߹ S = { C, C#, ..., B }
    int(C, E) + int(E, G) = int(C, G) ... ݁߹ଇ͕੒Γཱͭ
    int(C, E) = 4 ͸ C Λ 4 ൒Ի্͛Δʮ࡞༻ʯͱΈͳͤΔ
    int(s, t) ͸ԋࢉ + (mod 12) Ͱ܈Λͳ͢
    ܈Λ IVLS ͱ͓͘ͱɺؔ਺ int : S × S → IVLS
    GIS ͸ (S, IVLS, int)
    int(C, E) = 4
    int(E, G) = 3
    ԻఔΛଌΔؔ਺ int(C, E) = 4, int(E, G) = 3, int(C, G) = 7

    View Slide

  10. • int(C, E) = 4 ͸ C Λ 4 ൒Ի্͛Δʮ࡞༻ʯͱΈͳͤΔ
    • ݴ͍׵͑Ε͹ (int(C, E), C) ͔Β E ΁ͷରԠ
    • ରԠؔ܎ʢ࡞༻ʣΛ܈શମʹΘͨͬͯूΊͨ΋ͷ → ܈࡞༻
    2. Lewin ͷཧ࿦ͱ܈࡞༻
    C
    C#
    D

    E
    F
    F#
    G

    A

    B
    Իָతର৅ͷू߹ S = { C, C#, ..., B }
    ԻఔΛଌΔؔ਺ int(C, E) = 4, int(E, G) = 3, int(C, G) = 7
    int(C, E) + int(E, G) = int(C, G) ... ݁߹ଇ͕੒Γཱͭ
    int(C, E) = 4 ͸ C Λ 4 ൒Ի্͛Δʮ࡞༻ʯͱΈͳͤΔ
    int(s, t) ͸ԋࢉ + (mod 12) Ͱ܈Λͳ͢
    ܈Λ IVLS ͱ͓͘ͱɺؔ਺ int : S × S → IVLS
    GIS ͸ (S, IVLS, int)
    int(C, E) = 4
    int(E, G) = 3

    View Slide

  11. 2. Lewin ͷཧ࿦ͱ܈࡞༻
    • Def. 52ʢ܈࡞༻ʣ
    • ܈ (G, *) ͱɺ೚ҙͷू߹ X ʹ͍ͭͯߟ͑Δ
    • ܈࡞༻ͱ͸࣍ͷ 2 ৚݅Λຬͨؔ͢਺ f : G × X → X
    • (i) ∀x f(e)(x) = x
    • (ii) ∀x f(g * h)(x) = f(g)(f(h)(x))
    • ͜͜Ͱ؆ศͷͨΊ f(g)(x) = gɾx ͱ͍͏ه๏Λಋೖ͢Ε͹ɺ
    • (i) eɾx = x
    • (ii) (g * h)ɾx = gɾ(hɾx)

    View Slide

  12. 2. Lewin ͷཧ࿦ͱ܈࡞༻
    • ̇Example 46 ޙ൒ʢWe want to show ʙʣ
    • IVLSopp ͱ͍͏ͷ͸܈ IVLS ʹର͢Δٯ܈
    • ٯ܈ (Gopp, *') ͱ͸ɺ܈ (G, *) ʹରͯ͠ g1 *' g2 = g2 * g1
    Λຬͨ͢܈
    • ܈ G ͷ (g * h)ɾx = gɾ(hɾx) Λຬͨ͢࡞༻͸ʮࠨ܈࡞༻ʯͱ͍͏
    • ͜ͷͱ͖ٯ܈͸ xɾ(g * h) = (xɾg)ɾh Λຬͨ͢͜ͱ͕஌ΒΕ͍ͯΔʢӈ܈࡞༻ʣ
    • Lewin ͷΦϦδφϧ൛͸ӈ܈࡞༻Λ࢖ͬͨఆٛͳͷͰɺࠨ܈࡞༻ʢ܈࿦ͷ׳ྫʣͷఆ͔ٛΒߟ͑
    Δͱٯ܈ͩΑͶɺΛԆʑͱॻ͍͍ͯΔͷ͕̇Example 46 ͷޙ൒

    View Slide

  13. 2. Lewin ͷཧ࿦ͱ܈࡞༻
    • Def. 52ʢيಓʣ
    • ܈࡞༻ G × X → X ʹ͓͍ͯɺX ্Ͱఆٛ͞ΕΔҎԼͷؔ܎ ʙ ͸ʮಉ஋ؔ܎ʯʹͳΔ
    • x ʙ y 㱻 ∃g ∈ G : gɾx = y
    • ͋Δ x ∈ X ʹ͍ͭͯɺ্هͷಉ஋ؔ܎ʹΑΔಉ஋ྨ [ x ] ΛʮيಓʯͱΑͼɺGɾx ͱॻ͘
    • (∀x) Gɾx = X Λຬͨ͢ͱ͖ɺ܈࡞༻͸ʮભҠతʯͰ͋Δͱ͍͏ʢيಓ͕ͨͩҰͭʣ
    • ભҠత͔ͭ (∀x ∀y ∈ X) ∃!g : gɾx = y Λຬͨ͢ͱ͖ɺ܈࡞༻͸ʮ୯७ભҠతʯͰ͋Δͱ͍͏

    View Slide

  14. 2. Lewin ͷཧ࿦ͱ܈࡞༻
    • يಓͷྫ 1
    • ର৅ X = { C, ..., B }ɺ܈ G = { e, I0 } (= { ແ, C-F#࣠Ͱࠨӈ൓స })
    • يಓ GɾC = { C }, GɾC# = { C#, B }, GɾF = { F, G }, ...
    • يಓ͕ෳ਺͋ΔͷͰɺ܈࡞༻͸ભҠతͰͳ͍
    C
    C#
    D

    E
    F
    F#
    G

    A

    B
    I0

    View Slide

  15. 2. Lewin ͷཧ࿦ͱ܈࡞༻
    • يಓͷྫ 2
    • ର৅ X = { C, ..., B }ɺ܈ G = { e, T1 , ..., T11 } (= { ແ, 1 ൒Ի্͛Δ, ..., 11 ൒Ի্͛Δ })
    • يಓ GɾC = { C, ..., B } = X, GɾC# = { C, ..., B } = X, GɾF = { C, ... , B } = X, ...
    • يಓ͸།Ұɺ͔ͭ 2 ఺ؒͷม׵͕ҰҙͳͷͰɺ܈࡞༻͸ભҠత͔ͭ୯७ભҠత
    C
    C#
    D

    E
    F
    F#
    G

    A

    B T2
    T2

    View Slide

  16. 2. Lewin ͷཧ࿦ͱ܈࡞༻
    • يಓͷྫ 3
    • ର৅ X = { C, ..., B }ɺ܈ G = { e, T1 , ..., T11, I0, T1*I0, ..., T11*I0 }
    • يಓ GɾC = { C, ..., B } = X, GɾC# = { C, ..., B } = X, ... ΑͬͯભҠత
    • C → C# ͷ࡞༻ͱͯ͠ T1
    ͱ T1*I0
    ͷՄೳੑ͕ 2 ͭ͋ΔͷͰɺ୯७ભҠతͰ͸ͳ͍
    C
    C#
    D

    E
    F
    F#
    G

    A

    B
    C
    C#
    D

    E
    F
    F#
    G

    A

    B
    T1
    T1 I0
    T1*I0

    View Slide

  17. 2. Lewin ͷཧ࿦ͱ܈࡞༻
    • Ti*I0 = Ii
    ͱ͓͘
    • άϥϑͷ § 15 ʹग़͖ͯͨ Klumpenhouwer Network ͷ T ͱ I ͸
    ͜ͷ܈࡞༻Λද͍ͯ͠Δʢ࡞༻ʹண໨ͨ͠άϥϑʣ
    • ͳ͓ɺKlumpenhouwer ͸ Lewin ͷఋࢠ
    C
    C#
    D

    E
    F
    F#
    G

    A

    B
    I7
    C
    C#
    D

    E
    F
    F#
    G

    A

    B
    I5
    C
    C#
    D

    E
    F
    F#
    G

    A

    B
    T2
    Fig. 15.2

    View Slide

  18. 3. يಓʹΑΔྨผͱ࿨Իͷ෼ྨ

    View Slide

  19. • ܈࡞༻ G × X → X ʹ͓͍ͯɺX ্Ͱఆٛ͞ΕΔҎԼͷؔ܎ ʙ ͸ʮಉ஋ؔ܎ʯʹͳΔ
    • x ʙ y 㱻 ∃g ∈ G : gɾx = y
    • ͋Δ x ∈ X ʹ͍ͭͯɺ্هͷಉ஋ؔ܎ʹΑΔಉ஋ྨ [ x ] ΛʮيಓʯͱΑͼɺGɾx ͱॻ͘
    • ҎԼͷਤʹ͓͚ΔيಓɿGɾC = { C }, GɾC# = { C#, B }, GɾF = { F, G }, ...
    3. يಓʹΑΔྨผͱ࿨Իͷ෼ྨ
    C
    C#
    D

    E
    F
    F#
    G

    A

    B
    I0

    View Slide

  20. • يಓ Gɾx ͸ର৅ͷू߹ X Λྨผ͢Δ → 2 ͭͷيಓ͸૬౳͔ഉ൓ͷͲͪΒ͔
    • ূ໌ʣ2 ͭͷيಓ Gɾx, Gɾy ͷڞ௨ݩ z ∈ X Λߟ͑Δ
    • يಓͷఆٛΑΓ z = g1
    ɾx = g2
    ɾy ͳͷͰɺx = (g1-1*g2)ɾy
    • ͢ͳΘͪ೚ҙͷ x ͸ y ͷيಓʹؚ·ΕΔͷͰɺ2 ͭͷيಓ͸૬౳͔ഉ൓ͷͲͪΒ͔˙
    3. يಓʹΑΔྨผͱ࿨Իͷ෼ྨ
    C
    C#
    D

    E
    F
    F#
    G

    A

    B
    I0

    View Slide

  21. • ܈ G = { e, T1 , ..., T11, I0, I1, ..., I11 }
    • ू߹ X = { C, ..., B } ʹ͍ͭͯɺ2X ্ʹ͓͚Δ܈࡞༻Λߟ͑Δʢ࿨Ի ch ∈ 2X ʣ
    • ࿨Իશମ 2X Λ܈ G ʹΑΔيಓͰྨผʢʹ෼ྨʣ͢Δ
    • ྫ͑͹ɺC+5M7 ͱ F#mM7 ͸ I5
    ʹΑͬͯಉ͡يಓ → ಉ͡άϧʔϓͱͯ͠෼ྨՄೳ
    3. يಓʹΑΔྨผͱ࿨Իͷ෼ྨ

    View Slide

  22. 4. ޙষʹඞཁͳ஌ࣝ

    View Slide

  23. • ਖ਼ن෦෼܈ɺ঎܈ a.k.a. ৒༨܈ɿ§ 20 Ͱग़ͯ͘Δ
    • ܈ͷ௚ੵɿ§ 21 Ͱग़ͯ͘Δ
    • ࢿྉ੍࡞͕ྗਚ͖ͨͷͰɺ͕࣌ؒ༨ͬͨΒखॻ͖ղઆ
    4. ޙষʹඞཁͳ஌ࣝ

    View Slide