Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Cool Math for Hot Music 輪読会 Sec.19

Cool Math for Hot Music 輪読会 Sec.19

Ryo Sakuma

July 25, 2021
Tweet

More Decks by Ryo Sakuma

Other Decks in Science

Transcript

  1. HASH 2021-07-26 19. Group Actions, Subgroups, Quotients, and Products (Part

    1) Cool Math for Hot Music ྠಡձ
  2. ໨ඪ 1. Իָͷ Example ʹ͓͚ΔओுΛཧղ 2. GIS ͷ֓೦Λײ֮Ͱ௫Ή 3. Fig.

    19.4 ͷҙຯΛཧղ
  3. େ·͔ͳྲྀΕ 1. ಋೖɿָཧͷྺ࢙ §2 2. Lewin ͷཧ࿦ͱ܈࡞༻ §19.1 3. يಓʹΑΔྨผͱ࿨Իͷ෼ྨ

    §19.2.1 4. ޙষʹඞཁͳ஌ࣝ §19.1 & §19.2
  4. 1. ಋೖɿָཧͷྺ࢙

  5. • (1517-1590) G. Zarlino: ࡾ౓ԻఔͷීٴͳͲ • (1722) J. P. Rameau:

    ࿨੠࿦ • (1739) L. Euler: ࿨ԻͷάϥϑʢTonnetz, Euler spaceʣΛൃ໌ • (1893) H. Riemann: ػೳ࿨੠࿦ • (1970) Berklee College of Music ։ߍ • (1973) A. Forte: American Set Theory ͷᅘ໼ • (1987) D. Lewin: Transformation Theory Λఏএ • (1990) H. Klumpenhouwer: Klumpenhouwer Network Λൃ໌ 1. ಋೖɿָཧͷྺ࢙
  6. • Lewin ҎલɿԻָతର৅ͦΕࣗମΛॏࢹ • ྫɿC Major key ʹ͓͍ͯɺG7 ͸υϛφϯτ •

    LewinɿԻָతର৅͕ A → B ͱભҠ͢Δࡍͷաఔɾม׵Λॏࢹ • ྫɿC Major key ʹ͓͍ͯɺCM7 → G7 ͷʮաఔʯ͸υϛφϯτม׵ • ࿨ԻʹݶΒͣɺ༷ʑͳԻָతର৅ͷมԽաఔΛؔ਺ɾ܈ͱͯ͠ߟ͑Δͷ͕ Lewin ͷ "Transformation Theory" • Lewin ͷߟ͑ํ͸ɺָཧͷྺ࢙ʹ͓͚ΔҰछͷʮύϥμΠϜγϑτʯ 1. ಋೖɿָཧͷྺ࢙
  7. 2. Lewin ͷཧ࿦ͱ܈࡞༻

  8. • ̇Example 46 લ൒ • Lewin ͷ "Transformation Theory" ʹ͓͚Δ࠷ॳͷ࢓ࣄ͸ɺԻఔͷ֓೦ΛҰൠԽͨ͠

    "Generalized Interval System (GIS)" ͷఏএ • ௨ৗͷʮԻఔʯΛ࢖ͬͨ GIS ͷྫɿ 2. Lewin ͷཧ࿦ͱ܈࡞༻ C C# D Ĕ E F F# G Ă A B̆ B Իָతର৅ͷू߹ S = { C, C#, ..., B } int(C, E) + int(E, G) = int(C, G) ... ݁߹ଇ͕੒Γཱͭ int(C, E) = 4 ͸ C Λ 4 ൒Ի্͛Δʮ࡞༻ʯͱΈͳͤΔ int(s, t) ͸ԋࢉ + (mod 12) Ͱ܈Λͳ͢ ܈Λ IVLS ͱ͓͘ͱɺؔ਺ int : S × S → IVLS GIS ͸ (S, IVLS, int) int(C, E) = 4 int(E, G) = 3 ԻఔΛଌΔؔ਺ int(C, E) = 4, int(E, G) = 3, int(C, G) = 7
  9. • ̇Example 46 લ൒ • Իָతର৅ͷू߹ S ΍ɺԻఔΛଌΔؔ਺ int Λ͏·͘ม͑ͯ͋͛Ε͹ɺଞʹ΋৭ʑͳաఔɾมԽ

    ΛදݱͰ͖Δʢ࿨ԻɺϦζϜɺetc.ʣ • ͏·͘ม͑ͯ 㱻 ݁߹ଇ΍աఔͷҰҙੑͳͲʢޙड़ʣ 2. Lewin ͷཧ࿦ͱ܈࡞༻ C C# D Ĕ E F F# G Ă A B̆ B Իָతର৅ͷू߹ S = { C, C#, ..., B } int(C, E) + int(E, G) = int(C, G) ... ݁߹ଇ͕੒Γཱͭ int(C, E) = 4 ͸ C Λ 4 ൒Ի্͛Δʮ࡞༻ʯͱΈͳͤΔ int(s, t) ͸ԋࢉ + (mod 12) Ͱ܈Λͳ͢ ܈Λ IVLS ͱ͓͘ͱɺؔ਺ int : S × S → IVLS GIS ͸ (S, IVLS, int) int(C, E) = 4 int(E, G) = 3 ԻఔΛଌΔؔ਺ int(C, E) = 4, int(E, G) = 3, int(C, G) = 7
  10. • int(C, E) = 4 ͸ C Λ 4 ൒Ի্͛Δʮ࡞༻ʯͱΈͳͤΔ

    • ݴ͍׵͑Ε͹ (int(C, E), C) ͔Β E ΁ͷରԠ • ରԠؔ܎ʢ࡞༻ʣΛ܈શମʹΘͨͬͯूΊͨ΋ͷ → ܈࡞༻ 2. Lewin ͷཧ࿦ͱ܈࡞༻ C C# D Ĕ E F F# G Ă A B̆ B Իָతର৅ͷू߹ S = { C, C#, ..., B } ԻఔΛଌΔؔ਺ int(C, E) = 4, int(E, G) = 3, int(C, G) = 7 int(C, E) + int(E, G) = int(C, G) ... ݁߹ଇ͕੒Γཱͭ int(C, E) = 4 ͸ C Λ 4 ൒Ի্͛Δʮ࡞༻ʯͱΈͳͤΔ int(s, t) ͸ԋࢉ + (mod 12) Ͱ܈Λͳ͢ ܈Λ IVLS ͱ͓͘ͱɺؔ਺ int : S × S → IVLS GIS ͸ (S, IVLS, int) int(C, E) = 4 int(E, G) = 3
  11. 2. Lewin ͷཧ࿦ͱ܈࡞༻ • Def. 52ʢ܈࡞༻ʣ • ܈ (G, *)

    ͱɺ೚ҙͷू߹ X ʹ͍ͭͯߟ͑Δ • ܈࡞༻ͱ͸࣍ͷ 2 ৚݅Λຬͨؔ͢਺ f : G × X → X • (i) ∀x f(e)(x) = x • (ii) ∀x f(g * h)(x) = f(g)(f(h)(x)) • ͜͜Ͱ؆ศͷͨΊ f(g)(x) = gɾx ͱ͍͏ه๏Λಋೖ͢Ε͹ɺ • (i) eɾx = x • (ii) (g * h)ɾx = gɾ(hɾx)
  12. 2. Lewin ͷཧ࿦ͱ܈࡞༻ • ̇Example 46 ޙ൒ʢWe want to show

    ʙʣ • IVLSopp ͱ͍͏ͷ͸܈ IVLS ʹର͢Δٯ܈ • ٯ܈ (Gopp, *') ͱ͸ɺ܈ (G, *) ʹରͯ͠ g1 *' g2 = g2 * g1 Λຬͨ͢܈ • ܈ G ͷ (g * h)ɾx = gɾ(hɾx) Λຬͨ͢࡞༻͸ʮࠨ܈࡞༻ʯͱ͍͏ • ͜ͷͱ͖ٯ܈͸ xɾ(g * h) = (xɾg)ɾh Λຬͨ͢͜ͱ͕஌ΒΕ͍ͯΔʢӈ܈࡞༻ʣ • Lewin ͷΦϦδφϧ൛͸ӈ܈࡞༻Λ࢖ͬͨఆٛͳͷͰɺࠨ܈࡞༻ʢ܈࿦ͷ׳ྫʣͷఆ͔ٛΒߟ͑ Δͱٯ܈ͩΑͶɺΛԆʑͱॻ͍͍ͯΔͷ͕̇Example 46 ͷޙ൒
  13. 2. Lewin ͷཧ࿦ͱ܈࡞༻ • Def. 52ʢيಓʣ • ܈࡞༻ G ×

    X → X ʹ͓͍ͯɺX ্Ͱఆٛ͞ΕΔҎԼͷؔ܎ ʙ ͸ʮಉ஋ؔ܎ʯʹͳΔ • x ʙ y 㱻 ∃g ∈ G : gɾx = y • ͋Δ x ∈ X ʹ͍ͭͯɺ্هͷಉ஋ؔ܎ʹΑΔಉ஋ྨ [ x ] ΛʮيಓʯͱΑͼɺGɾx ͱॻ͘ • (∀x) Gɾx = X Λຬͨ͢ͱ͖ɺ܈࡞༻͸ʮભҠతʯͰ͋Δͱ͍͏ʢيಓ͕ͨͩҰͭʣ • ભҠత͔ͭ (∀x ∀y ∈ X) ∃!g : gɾx = y Λຬͨ͢ͱ͖ɺ܈࡞༻͸ʮ୯७ભҠతʯͰ͋Δͱ͍͏
  14. 2. Lewin ͷཧ࿦ͱ܈࡞༻ • يಓͷྫ 1 • ର৅ X =

    { C, ..., B }ɺ܈ G = { e, I0 } (= { ແ, C-F#࣠Ͱࠨӈ൓స }) • يಓ GɾC = { C }, GɾC# = { C#, B }, GɾF = { F, G }, ... • يಓ͕ෳ਺͋ΔͷͰɺ܈࡞༻͸ભҠతͰͳ͍ C C# D Ĕ E F F# G Ă A B̆ B I0
  15. 2. Lewin ͷཧ࿦ͱ܈࡞༻ • يಓͷྫ 2 • ର৅ X =

    { C, ..., B }ɺ܈ G = { e, T1 , ..., T11 } (= { ແ, 1 ൒Ի্͛Δ, ..., 11 ൒Ի্͛Δ }) • يಓ GɾC = { C, ..., B } = X, GɾC# = { C, ..., B } = X, GɾF = { C, ... , B } = X, ... • يಓ͸།Ұɺ͔ͭ 2 ఺ؒͷม׵͕ҰҙͳͷͰɺ܈࡞༻͸ભҠత͔ͭ୯७ભҠత C C# D Ĕ E F F# G Ă A B̆ B T2 T2
  16. 2. Lewin ͷཧ࿦ͱ܈࡞༻ • يಓͷྫ 3 • ର৅ X =

    { C, ..., B }ɺ܈ G = { e, T1 , ..., T11, I0, T1*I0, ..., T11*I0 } • يಓ GɾC = { C, ..., B } = X, GɾC# = { C, ..., B } = X, ... ΑͬͯભҠత • C → C# ͷ࡞༻ͱͯ͠ T1 ͱ T1*I0 ͷՄೳੑ͕ 2 ͭ͋ΔͷͰɺ୯७ભҠతͰ͸ͳ͍ C C# D Ĕ E F F# G Ă A B̆ B C C# D Ĕ E F F# G Ă A B̆ B T1 T1 I0 T1*I0
  17. 2. Lewin ͷཧ࿦ͱ܈࡞༻ • Ti*I0 = Ii ͱ͓͘ • άϥϑͷ

    § 15 ʹग़͖ͯͨ Klumpenhouwer Network ͷ T ͱ I ͸ ͜ͷ܈࡞༻Λද͍ͯ͠Δʢ࡞༻ʹண໨ͨ͠άϥϑʣ • ͳ͓ɺKlumpenhouwer ͸ Lewin ͷఋࢠ C C# D Ĕ E F F# G Ă A B̆ B I7 C C# D Ĕ E F F# G Ă A B̆ B I5 C C# D Ĕ E F F# G Ă A B̆ B T2 Fig. 15.2
  18. 3. يಓʹΑΔྨผͱ࿨Իͷ෼ྨ

  19. • ܈࡞༻ G × X → X ʹ͓͍ͯɺX ্Ͱఆٛ͞ΕΔҎԼͷؔ܎ ʙ

    ͸ʮಉ஋ؔ܎ʯʹͳΔ • x ʙ y 㱻 ∃g ∈ G : gɾx = y • ͋Δ x ∈ X ʹ͍ͭͯɺ্هͷಉ஋ؔ܎ʹΑΔಉ஋ྨ [ x ] ΛʮيಓʯͱΑͼɺGɾx ͱॻ͘ • ҎԼͷਤʹ͓͚ΔيಓɿGɾC = { C }, GɾC# = { C#, B }, GɾF = { F, G }, ... 3. يಓʹΑΔྨผͱ࿨Իͷ෼ྨ C C# D Ĕ E F F# G Ă A B̆ B I0
  20. • يಓ Gɾx ͸ର৅ͷू߹ X Λྨผ͢Δ → 2 ͭͷيಓ͸૬౳͔ഉ൓ͷͲͪΒ͔ •

    ূ໌ʣ2 ͭͷيಓ Gɾx, Gɾy ͷڞ௨ݩ z ∈ X Λߟ͑Δ • يಓͷఆٛΑΓ z = g1 ɾx = g2 ɾy ͳͷͰɺx = (g1-1*g2)ɾy • ͢ͳΘͪ೚ҙͷ x ͸ y ͷيಓʹؚ·ΕΔͷͰɺ2 ͭͷيಓ͸૬౳͔ഉ൓ͷͲͪΒ͔˙ 3. يಓʹΑΔྨผͱ࿨Իͷ෼ྨ C C# D Ĕ E F F# G Ă A B̆ B I0
  21. • ܈ G = { e, T1 , ..., T11,

    I0, I1, ..., I11 } • ू߹ X = { C, ..., B } ʹ͍ͭͯɺ2X ্ʹ͓͚Δ܈࡞༻Λߟ͑Δʢ࿨Ի ch ∈ 2X ʣ • ࿨Իશମ 2X Λ܈ G ʹΑΔيಓͰྨผʢʹ෼ྨʣ͢Δ • ྫ͑͹ɺC+5M7 ͱ F#mM7 ͸ I5 ʹΑͬͯಉ͡يಓ → ಉ͡άϧʔϓͱͯ͠෼ྨՄೳ 3. يಓʹΑΔྨผͱ࿨Իͷ෼ྨ
  22. 4. ޙষʹඞཁͳ஌ࣝ

  23. • ਖ਼ن෦෼܈ɺ঎܈ a.k.a. ৒༨܈ɿ§ 20 Ͱग़ͯ͘Δ • ܈ͷ௚ੵɿ§ 21 Ͱग़ͯ͘Δ

    • ࢿྉ੍࡞͕ྗਚ͖ͨͷͰɺ͕࣌ؒ༨ͬͨΒखॻ͖ղઆ 4. ޙষʹඞཁͳ஌ࣝ