Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
BigQueryで行う、 機械学習のための データ前処理
Search
hiroaki
December 18, 2019
Technology
4
2.4k
BigQueryで行う、 機械学習のための データ前処理
hiroaki
December 18, 2019
Tweet
Share
More Decks by hiroaki
See All by hiroaki
機械学習を無理なく広告システムに導入する
hiroaki8388
2
5.5k
Pythonで、処理をより効率化するためのTips集
hiroaki8388
15
11k
Other Decks in Technology
See All in Technology
業務ヒアリングと知識の呪い
tamai_63
0
290
AWSの初級者向けAI・ML資格『AWS Certified AI Practitioner』の傾向と対策/So You Want To Pass AWS Certified AI Practitioner
quiver
0
510
ファインディにおけるフロントエンド技術選定の歴史
puku0x
1
100
ADRを運用して3年経った僕らの現在地
onk
PRO
13
5.8k
Develop to Survive - YAPC::Hakodate 2024 Keynote
moznion
8
2.8k
寒冷地稲作の歴史にみるコミュニティ
miu_crescent
2
110
これはPerl? それともRuby? クイズ〜〜〜〜〜!!!- Perl or Ruby Quiz
moznion
2
1.9k
Deno Deploy で Web Cache API を 使えるようになったので試した知見
toranoana
1
110
LINE-ChatGPT 倫理問題を整理する全力肯定彼氏くん [LuC4]に訪れたサービス開始以来の最大の危機
o_ob
2
160
Oracle GoldenGate 23ai 導入Tips
oracle4engineer
PRO
1
280
テストコードの品質を客観的な数値で担保しよう〜Mutation Testのすすめ〜
ysknsid25
12
3.4k
軽いノリで"自動化"に取り組んではいけないという話
tetsuyaooooo
1
590
Featured
See All Featured
Optimising Largest Contentful Paint
csswizardry
31
2.8k
The Cult of Friendly URLs
andyhume
77
6k
What's in a price? How to price your products and services
michaelherold
243
11k
The Pragmatic Product Professional
lauravandoore
31
6.2k
How to name files
jennybc
77
99k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
25
660
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
167
49k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Fontdeck: Realign not Redesign
paulrobertlloyd
81
5.2k
The Invisible Customer
myddelton
119
13k
The Brand Is Dead. Long Live the Brand.
mthomps
53
38k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Transcript
BigQueryで行う、 機械学習のための データ前処理 GCPUG Tokyo December 2019 長谷川大耀 (Fringe81)
自己紹介 長谷川大耀(@Hase8388) で 機械学習の開発やってます
BigQueryで機械学習が行えると何が嬉しい? • 大量のデータから、安く簡単にデータセットを構築できる • SQLで処理ができるので、誰でも簡単に実行可能 • BQMLで構築したモデルにシームレスにデータを流し込める 今回話すこと さらによりよいモデルを作るために、 BQ(ML)での前処理を行うための方法の紹介
話さないこと アルゴリズムの話など、モデル自体の仕組みの話
機械学習では、前処理がなぜ重要? 解くべきタスクの本質を、 より明らかな形として表現するデータに加工することで、 モデルの性能を更に引き出すことができる 1. 概観の把握 2. 特徴量の作成、変換 3. モデルにデータセットを流し込む
それぞれのフェイズで 代表的な関数+自分が好きな関数を紹介します
1. データの概観するための関数 • 分布の概観把握なども簡単にできる • 基本的な統計集約関数
より複雑な分析や可視化はJupyterで Jupyter上でBQの出力結果を DataFrameとして格納し、pandas/matplotlibなどで分析 google-cloud-bigqueryでJupyter上から接続 https://googleapis.dev/python/bigquery/latest/magics.html#module-google.cloud.bigquery.magics 誤ったクエリでの重課金を 防ぐために、課金される容量に 上限もつけれる
2. 特徴量を作成するための関数 様々な特徴量作成・変換のための 前処理用の関数が、最近続々追加 ! • ML.QUANTITLE_BUCKTIZE 連続値から、多項式特徴量を作成
2. 特徴量を作成するための関数 様々な特徴量作成・変換のための 前処理用の関数が、最近続々追加 ! • ML.FEATURE_CROSS 交差特徴量を作成
2. 特徴量を作成するための関数 様々な特徴量作成・変換のための 前処理用の関数が、最近続々追加 ! • ML.NGRAMS 文章を指定した単位で分かち書き
3. 特徴量を変換するための関数 特徴量の変換も、 短いクエリで簡単に実行可能 ! • IF 二値化
3. 特徴量を変換するための関数 特徴量の変換も、 短いクエリで簡単に実行可能 ! • ML.QUANTITLE_BUCKTIZE 連続値を指定した数の binに振り分ける
3. 特徴量を変換するための関数 特徴量の変換も、 短いクエリで簡単に実行可能 ! • ML.MIN_MAX_SCALER • ML.STANDARD_SCALER 正規化、標準化
ex. 地理情報をHash化する: ST_GEOHASH 地理情報をカテゴリとして扱うために Hash化するなら、ST_STGEOHASHが便利 ! Hash値を長くすればするほど、 より詳細な位置情報を表現できる
3. 前処理したデータをモデルに流し込む 課題: BQMLで作成したモデルにデータセットを流し込む その時、学習、予測、評価で、イチイチ同じ前処理を行うのはシンドい 学習 データ 前処理 評価 データ
前処理 予測 データ 前処理 モデル モデルを使う人が前処理のロジックを 知っている必要がある。つらい 学習時 予測時 重複!
3. 前処理とモデルを一体化: TRANSFORM句 前処理を集約-隠蔽でき、 より使いやすいモデルが構築できる 学習 データ 評価 データ 前処理
予測 データ モデル 解決: 前処理モデルの中に組み込み、 予測、評価ではただ元のデータを流し込むだけで良い 学習時 予測時
最後に BigQuery(ML)を使うと、SQLだけで簡単に前処理とモデル構築が行える 新しい関数とアルゴリズムがどんどん追加されているので、今後がより楽しみ
エンジニアを積極採用中です ! Front-end Back-end Scala / Go Python JS /
Elm React / RN