Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
BigQueryで行う、 機械学習のための データ前処理
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
hiroaki
December 18, 2019
Technology
4
2.6k
BigQueryで行う、 機械学習のための データ前処理
hiroaki
December 18, 2019
Tweet
Share
More Decks by hiroaki
See All by hiroaki
機械学習を無理なく広告システムに導入する
hiroaki8388
2
6.2k
Pythonで、処理をより効率化するためのTips集
hiroaki8388
15
12k
Other Decks in Technology
See All in Technology
全員が「作り手」になる。職能の壁を溶かすプロトタイプ開発。
hokuo
1
670
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
190
ZOZOにおけるAI活用の現在 ~開発組織全体での取り組みと試行錯誤~
zozotech
PRO
4
3k
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
2.9k
みんなだいすきALB、NLBの 仕組みから最新機能まで総おさらい / Mastering ALB & NLB: Internal Mechanics and Latest Innovations
kaminashi
0
200
SMTP完全に理解した ✉️
yamatai1212
0
180
IaaS/SaaS管理における SREの実践 - SRE Kaigi 2026
bbqallstars
4
1.3k
Mosaic AI Gatewayでコーディングエージェントを配るための運用Tips / JEDAI 2026 新春 Meetup! AIコーディング特集
genda
0
140
AIとともに歩む情報セキュリティ / Information Security with AI
kanny
4
3.1k
CDK対応したAWS DevOps Agentを試そう_20260201
masakiokuda
1
130
Frontier Agents (Kiro autonomous agent / AWS Security Agent / AWS DevOps Agent) の紹介
msysh
3
120
あたらしい上流工程の形。 0日導入からはじめるAI駆動PM
kumaiu
4
690
Featured
See All Featured
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
150
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.3k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.6k
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
150
Writing Fast Ruby
sferik
630
62k
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
420
<Decoding/> the Language of Devs - We Love SEO 2024
nikkihalliwell
1
120
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
420
Tell your own story through comics
letsgokoyo
1
800
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Designing Experiences People Love
moore
144
24k
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
Transcript
BigQueryで行う、 機械学習のための データ前処理 GCPUG Tokyo December 2019 長谷川大耀 (Fringe81)
自己紹介 長谷川大耀(@Hase8388) で 機械学習の開発やってます
BigQueryで機械学習が行えると何が嬉しい? • 大量のデータから、安く簡単にデータセットを構築できる • SQLで処理ができるので、誰でも簡単に実行可能 • BQMLで構築したモデルにシームレスにデータを流し込める 今回話すこと さらによりよいモデルを作るために、 BQ(ML)での前処理を行うための方法の紹介
話さないこと アルゴリズムの話など、モデル自体の仕組みの話
機械学習では、前処理がなぜ重要? 解くべきタスクの本質を、 より明らかな形として表現するデータに加工することで、 モデルの性能を更に引き出すことができる 1. 概観の把握 2. 特徴量の作成、変換 3. モデルにデータセットを流し込む
それぞれのフェイズで 代表的な関数+自分が好きな関数を紹介します
1. データの概観するための関数 • 分布の概観把握なども簡単にできる • 基本的な統計集約関数
より複雑な分析や可視化はJupyterで Jupyter上でBQの出力結果を DataFrameとして格納し、pandas/matplotlibなどで分析 google-cloud-bigqueryでJupyter上から接続 https://googleapis.dev/python/bigquery/latest/magics.html#module-google.cloud.bigquery.magics 誤ったクエリでの重課金を 防ぐために、課金される容量に 上限もつけれる
2. 特徴量を作成するための関数 様々な特徴量作成・変換のための 前処理用の関数が、最近続々追加 ! • ML.QUANTITLE_BUCKTIZE 連続値から、多項式特徴量を作成
2. 特徴量を作成するための関数 様々な特徴量作成・変換のための 前処理用の関数が、最近続々追加 ! • ML.FEATURE_CROSS 交差特徴量を作成
2. 特徴量を作成するための関数 様々な特徴量作成・変換のための 前処理用の関数が、最近続々追加 ! • ML.NGRAMS 文章を指定した単位で分かち書き
3. 特徴量を変換するための関数 特徴量の変換も、 短いクエリで簡単に実行可能 ! • IF 二値化
3. 特徴量を変換するための関数 特徴量の変換も、 短いクエリで簡単に実行可能 ! • ML.QUANTITLE_BUCKTIZE 連続値を指定した数の binに振り分ける
3. 特徴量を変換するための関数 特徴量の変換も、 短いクエリで簡単に実行可能 ! • ML.MIN_MAX_SCALER • ML.STANDARD_SCALER 正規化、標準化
ex. 地理情報をHash化する: ST_GEOHASH 地理情報をカテゴリとして扱うために Hash化するなら、ST_STGEOHASHが便利 ! Hash値を長くすればするほど、 より詳細な位置情報を表現できる
3. 前処理したデータをモデルに流し込む 課題: BQMLで作成したモデルにデータセットを流し込む その時、学習、予測、評価で、イチイチ同じ前処理を行うのはシンドい 学習 データ 前処理 評価 データ
前処理 予測 データ 前処理 モデル モデルを使う人が前処理のロジックを 知っている必要がある。つらい 学習時 予測時 重複!
3. 前処理とモデルを一体化: TRANSFORM句 前処理を集約-隠蔽でき、 より使いやすいモデルが構築できる 学習 データ 評価 データ 前処理
予測 データ モデル 解決: 前処理モデルの中に組み込み、 予測、評価ではただ元のデータを流し込むだけで良い 学習時 予測時
最後に BigQuery(ML)を使うと、SQLだけで簡単に前処理とモデル構築が行える 新しい関数とアルゴリズムがどんどん追加されているので、今後がより楽しみ
エンジニアを積極採用中です ! Front-end Back-end Scala / Go Python JS /
Elm React / RN