Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
BigQueryで行う、 機械学習のための データ前処理
Search
hiroaki
December 18, 2019
Technology
4
2.5k
BigQueryで行う、 機械学習のための データ前処理
hiroaki
December 18, 2019
Tweet
Share
More Decks by hiroaki
See All by hiroaki
機械学習を無理なく広告システムに導入する
hiroaki8388
2
6k
Pythonで、処理をより効率化するためのTips集
hiroaki8388
15
11k
Other Decks in Technology
See All in Technology
20251007: What happens when multi-agent systems become larger? (CyberAgent, Inc)
ornew
1
510
Introdução a Service Mesh usando o Istio
aeciopires
1
260
Click A, Buy B: Rethinking Conversion Attribution in ECommerce Recommendations
lycorptech_jp
PRO
0
110
Kubernetes self-healing of your workload
hwchiu
0
300
CNCFの視点で捉えるPlatform Engineering - 最新動向と展望 / Platform Engineering from the CNCF Perspective
hhiroshell
0
110
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
20k
OpenTelemetry が拡げる Gemini CLI の可観測性
phaya72
2
950
SCONE - 動画配信の帯域を最適化する新プロトコル
kazuho
1
270
プレーリーカードを活用しよう❗❗デジタル名刺交換からはじまるイベント会場交流のススメ
tsukaman
0
190
Codexとも仲良く。CodeRabbit CLIの紹介
moongift
PRO
1
260
Wasmの気になる最新情報
askua
0
170
NLPコロキウム20251022_超効率化への挑戦: LLM 1bit量子化のロードマップ
yumaichikawa
1
130
Featured
See All Featured
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Agile that works and the tools we love
rasmusluckow
331
21k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
990
Navigating Team Friction
lara
190
15k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
115
20k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
The World Runs on Bad Software
bkeepers
PRO
72
11k
The Cult of Friendly URLs
andyhume
79
6.6k
Raft: Consensus for Rubyists
vanstee
140
7.2k
Speed Design
sergeychernyshev
32
1.2k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Transcript
BigQueryで行う、 機械学習のための データ前処理 GCPUG Tokyo December 2019 長谷川大耀 (Fringe81)
自己紹介 長谷川大耀(@Hase8388) で 機械学習の開発やってます
BigQueryで機械学習が行えると何が嬉しい? • 大量のデータから、安く簡単にデータセットを構築できる • SQLで処理ができるので、誰でも簡単に実行可能 • BQMLで構築したモデルにシームレスにデータを流し込める 今回話すこと さらによりよいモデルを作るために、 BQ(ML)での前処理を行うための方法の紹介
話さないこと アルゴリズムの話など、モデル自体の仕組みの話
機械学習では、前処理がなぜ重要? 解くべきタスクの本質を、 より明らかな形として表現するデータに加工することで、 モデルの性能を更に引き出すことができる 1. 概観の把握 2. 特徴量の作成、変換 3. モデルにデータセットを流し込む
それぞれのフェイズで 代表的な関数+自分が好きな関数を紹介します
1. データの概観するための関数 • 分布の概観把握なども簡単にできる • 基本的な統計集約関数
より複雑な分析や可視化はJupyterで Jupyter上でBQの出力結果を DataFrameとして格納し、pandas/matplotlibなどで分析 google-cloud-bigqueryでJupyter上から接続 https://googleapis.dev/python/bigquery/latest/magics.html#module-google.cloud.bigquery.magics 誤ったクエリでの重課金を 防ぐために、課金される容量に 上限もつけれる
2. 特徴量を作成するための関数 様々な特徴量作成・変換のための 前処理用の関数が、最近続々追加 ! • ML.QUANTITLE_BUCKTIZE 連続値から、多項式特徴量を作成
2. 特徴量を作成するための関数 様々な特徴量作成・変換のための 前処理用の関数が、最近続々追加 ! • ML.FEATURE_CROSS 交差特徴量を作成
2. 特徴量を作成するための関数 様々な特徴量作成・変換のための 前処理用の関数が、最近続々追加 ! • ML.NGRAMS 文章を指定した単位で分かち書き
3. 特徴量を変換するための関数 特徴量の変換も、 短いクエリで簡単に実行可能 ! • IF 二値化
3. 特徴量を変換するための関数 特徴量の変換も、 短いクエリで簡単に実行可能 ! • ML.QUANTITLE_BUCKTIZE 連続値を指定した数の binに振り分ける
3. 特徴量を変換するための関数 特徴量の変換も、 短いクエリで簡単に実行可能 ! • ML.MIN_MAX_SCALER • ML.STANDARD_SCALER 正規化、標準化
ex. 地理情報をHash化する: ST_GEOHASH 地理情報をカテゴリとして扱うために Hash化するなら、ST_STGEOHASHが便利 ! Hash値を長くすればするほど、 より詳細な位置情報を表現できる
3. 前処理したデータをモデルに流し込む 課題: BQMLで作成したモデルにデータセットを流し込む その時、学習、予測、評価で、イチイチ同じ前処理を行うのはシンドい 学習 データ 前処理 評価 データ
前処理 予測 データ 前処理 モデル モデルを使う人が前処理のロジックを 知っている必要がある。つらい 学習時 予測時 重複!
3. 前処理とモデルを一体化: TRANSFORM句 前処理を集約-隠蔽でき、 より使いやすいモデルが構築できる 学習 データ 評価 データ 前処理
予測 データ モデル 解決: 前処理モデルの中に組み込み、 予測、評価ではただ元のデータを流し込むだけで良い 学習時 予測時
最後に BigQuery(ML)を使うと、SQLだけで簡単に前処理とモデル構築が行える 新しい関数とアルゴリズムがどんどん追加されているので、今後がより楽しみ
エンジニアを積極採用中です ! Front-end Back-end Scala / Go Python JS /
Elm React / RN