Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PostgreSQL+pgvector で LlamaIndex の Property Gr...
Search
hmatsu47
PRO
June 09, 2025
Technology
0
12
PostgreSQL+pgvector で LlamaIndex の Property Graph Index を試す(序章)
俺の勉強会 #2 2025/6/9 LT
(6/20 一部訂正)
hmatsu47
PRO
June 09, 2025
Tweet
Share
More Decks by hmatsu47
See All by hmatsu47
ゲームで体感!Aurora DSQL の OCC(楽観的同時実行制御)
hmatsu47
PRO
0
9
PostgreSQL+pgvector で GraphRAG に挑戦 & pgvectorscale 0.7.x アップデート
hmatsu47
PRO
0
17
LlamaIndex の Property Graph Index を PostgreSQL 上に構築してデータ構造を見てみる
hmatsu47
PRO
0
14
HeatWave on AWS という選択肢を検討してみる
hmatsu47
PRO
0
9
HeatWave on AWS のインバウンドレプリケーションで HeatWave エンジン有効時のレプリケーションラグを確認してみた!
hmatsu47
PRO
0
19
CloudWatch Database Insights 関連アップデート
hmatsu47
PRO
0
39
さいきんの MySQL との付き合い方 〜 MySQL 8.0 より後の世界へようこそ 〜
hmatsu47
PRO
0
33
ベクトルストア入門
hmatsu47
PRO
0
26
Aurora DSQL について
hmatsu47
PRO
0
39
Other Decks in Technology
See All in Technology
私とAWSとの関わりの歩み~意志あるところに道は開けるかも?~
nagisa53
1
140
AI駆動開発 with MixLeap Study【大阪支部 #3】
lycorptech_jp
PRO
0
280
怖くない!GritQLでBiomeプラグインを作ろうよ
pal4de
1
140
SAE J1939シミュレーション環境構築
daikiokazaki
1
200
FAST導入1年間のふりかえり〜現実を直視し、さらなる進化を求めて〜 / Review of the first year of FAST implementation
wooootack
1
210
反脆弱性(アンチフラジャイル)とデータ基盤構築
cuebic9bic
2
110
Kiroから考える AIコーディングツールの潮流
s4yuba
2
520
会社もクラウドも違うけど 通じたコスト削減テクニック/Cost optimization strategies effective regardless of company or cloud provider
aeonpeople
2
410
With Devin -AIの自律とメンバーの自立
kotanin0
2
930
ecspressoの設計思想に至る道 / sekkeinight2025
fujiwara3
12
2.1k
TypeScript 上達の道
ysknsid25
23
4.9k
robocopy の怖い話/scary-story-about-robocopy
emiki
0
420
Featured
See All Featured
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
5.9k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
The Invisible Side of Design
smashingmag
301
51k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.7k
BBQ
matthewcrist
89
9.8k
Docker and Python
trallard
45
3.5k
Speed Design
sergeychernyshev
32
1k
Site-Speed That Sticks
csswizardry
10
730
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
860
Transcript
PostgreSQL+pgvector で LlamaIndex の Property Graph Index を試す (序章) 俺の勉強会
#2 2025/6/9 まつひさ(hmatsu47)
自己紹介 松久裕保(@hmatsu47) • https://qiita.com/hmatsu47 • 現在: ◦ 名古屋で Web インフラのお守り係をしています
◦ SRE チームに所属しつつ技術検証の支援をしています ◦ 普段カンファレンス・勉強会では DB の話しかしていません (ほぼ) 2
ところで • 最近の生成 AI 界隈では MCP がブームですが、ちょっと 前までは RAG が流行っていましたね
◦ もう見る影もないですが ◦ とはいえ、実務では RAG で頑張っている勢のほうが多いかも? 3
RAG といえば • RAG(Retrieval Augmented Generation:検索拡張生成) ◦ 生成 AI が学習していない(弱い)知識について普通に質問する
と、生成 AI は正しい答えを返せない ◦ 関連知識を DB などから検索して持ってきてコンテキストとして 生成 AI に与えると、正しい答えを返せる ◦ 関連知識を DB で検索するときの標準的な方法はベクトル検索 4
ベクトル検索 • 意味が近い文章などを探すときに使う ◦ 最近は生成 AI の埋め込みモデルを使って文章などをベクトル化 するのが主流 ◦ 一般的な埋め込みモデルでは長い文章をそのままベクトル化する
ことはできないので、文章を分割(チャンク化)してチャンクごと にベクトル化して DB に入れる ◦ 質問文もベクトル化して、DB で「距離が近いベクトル」を探す ▪ 生成 AI にコンテキストとして渡すのはベクトルではなくて元の文章など 5
詳細は • BuriKaigi2025 の発表資料 ◦ https://www.docswell.com/s/hmatsu47/ZP2LY6-2025-01-19-235645 6
ベクトル検索型 RAG の弱点 • チャンク化するときの分割方法が難しい ◦ 細かく分割してしまうと必要な情報を生成 AI に渡せない ◦
大きすぎると埋め込みモデルで扱えない・検索精度が落ちる • ソースとなる情報が分散していると取りこぼす ◦ 脚注がある文章や図表・添付資料に補足があるケースなど ◦ ベクトル検索で「近い順に n 件分を取得」する際、少なすぎると 取りこぼしが発生し、多すぎると無関係な情報を取ってしまう 7
ベクトル検索型 RAG の弱点 • チャンク化するときの分割方法が難しい ◦ 細かく分割してしまうと必要な情報を生成 AI に渡せない ◦
大きすぎると埋め込みモデルで扱えない・検索精度が落ちる • ソースとなる情報が分散していると取りこぼす ◦ 脚注がある文章や図表・添付資料に補足があるケースなど ◦ ベクトル検索で「近い順に n 件分を取得」する際、少なすぎると 取りこぼしが発生し、多すぎると無関係な情報を取ってしまう 8 今回は検索精度低下に対処する目的で 「グラフインデックス」を使ってみる
グラフ RAG(グラフインデックス) • 関連知識の格納と検索にグラフ構造を利用 ◦ 色々な方法はあるが、LlamaIndex で Property Graph Index
をデ フォルト構成で使う場合は、文章チャンクの中からいくつかの 「主語+述語+目的語」(トリプレット)を抽出し、ベクトル検索 と併用する ▪ 検索時にはベクトル検索後に対象チャンクに関連するグラフ構造を指定の深 さまで辿り、チャンクと一緒に LLM に対してコンテキストとして渡す 9 私 パン 食べる
やったこと • LlamaIndex に PostgreSQL+pgcevtor のグラフストア を実装 ◦ TiDB 用グラフストア実装を元に
Amazon Q Developer GitHub 統合(プレビュー)で PostgreSQL+pgvector 用に書き換え ▪ Amazon Q Developer GitHub 統合で実装できなかったところは手作業で ◦ Property Graph Index と Streamlit で単答チャットを実装 ◦ サンプルデータをインデックス化して実行 ▪ LLamaIndex のサンプル文書(エッセイ)を日本語訳したもの(脚注付き) 10
Amazon Q Developer GitHub 統合での作業 • トークン数の限界、過去作業に関するコンテキスト引き 継ぎなどでそこそこ苦労 11
Property Graph Index でインデックス生成 postgres=# \d List of relations Schema
| Name | Type | Owner --------+---------------------+----------+---------- public | pg_nodes | table | postgres public | pg_relations | table | postgres public | pg_relations_id_seq | sequence | postgres (3 rows) 12
Property Graph Index でインデックス生成 postgres=# \d pg_nodes Table "public.pg_nodes" Column
| Type | Collation | Nullable | Default ------------+-----------------------------+-----------+----------+--------- id | character varying(512) | | not null | text | text | | | name | character varying(512) | | | label | character varying(512) | | not null | properties | jsonb | | | embedding | vector(1024) | | | created_at | timestamp without time zone | | not null | now() updated_at | timestamp without time zone | | not null | now() Indexes: "pg_nodes_pkey" PRIMARY KEY, btree (id) Referenced by: TABLE "pg_relations" CONSTRAINT "pg_relations_source_id_fkey" FOREIGN KEY (source_id) REFERENCES pg_nodes(id) TABLE "pg_relations" CONSTRAINT "pg_relations_target_id_fkey" FOREIGN KEY (target_id) REFERENCES pg_nodes(id) 13
Property Graph Index でインデックス生成 postgres=# \d pg_relations Table "public.pg_relations" Column
| Type | Collation | Nullable | Default ------------+-----------------------------+-----------+----------+----------------------------------------- - id | integer | | not null | nextval('pg_relations_id_seq'::regclass) label | character varying(512) | | not null | source_id | character varying(512) | | | target_id | character varying(512) | | | properties | jsonb | | | created_at | timestamp without time zone | | not null | now() updated_at | timestamp without time zone | | not null | now() Indexes: "pg_relations_pkey" PRIMARY KEY, btree (id) Foreign-key constraints: "pg_relations_source_id_fkey" FOREIGN KEY (source_id) REFERENCES pg_nodes(id) "pg_relations_target_id_fkey" FOREIGN KEY (target_id) REFERENCES pg_nodes(id) 14
Property Graph Index でインデックス生成 postgres=# SELECT id, text, name, label,
properties FROM public.pg_nodes LIMIT 1; (中略) id | 9035ea97-bd3d-449e-a7c6-4905ce223bd2 text | 私が取り組んできたこと (中略) | 大学に入る前、学校以外で私が取り組んでいた主なことは、文章を書くこととプログラミングだった。エッセイは書かなかった。 当時、そして今もおそらく初心者の作家が書くべきとされている短編小説を書いていた。私の小説はひどい出来だった。ほとんど筋がなく、感情 の強い登場人物がいるだけで、それが作品に深みを与えているのだと思い込んでいた (中略) name | label | text_chunk properties | {"doc_id": "4442846b-2d07-41e6-9dab-3cdea250595a", "file_name": "example_ja.txt","file_path": "/Users/hmatsu47/llama_index_property_graph_test/data/example_ja.txt", "file_size": 44432, "file_type": "text/plain", "_node_type": "TextNode", "ref_doc_id": "4442846b-2d07-41e6-9dab-3cdea250595a", "document_id": "4442846b-2d07-41e6-9dab-3cdea250595a", (中略) \"metadata_seperator\": \"\\n\", \"text_template\": \"{metadata_str}\\n\\n{content}\", \"class_name\": \"TextNode\"}", "creation_date": "2025-05-22", "last_modified_date": "2025-05-22"} 15
Property Graph Index でインデックス生成 postgres=# SELECT id, label, source_id, target_id,
properties FROM public.pg_relations LIMIT 2; (中略) id | 3 label | 書いていた source_id | 私 target_id | 短編小説 properties | {"file_name": "example_ja.txt", "file_path": "/Users/hmatsu47/llama_index_property_graph_test/data/example_ja.txt", "file_size": 44432, "file_type": "text/plain", "creation_date": "2025-05-22", "triplet_source_id": "559b69a0-8af5-423a-ba32-11256cb578f5", "last_modified_date": "2025-05-22"} (中略) id | 4 label | 初めて書いた source_id | 私 target_id | プログラム properties | {"file_name": "example_ja.txt", "file_path": "/Users/hmatsu47/llama_index_property_graph_test/data/example_ja.txt", "file_size": 44432, "file_type": "text/plain", "creation_date": "2025-05-22", "triplet_source_id": "559b69a0-8af5-423a-ba32-11256cb578f5", "last_modified_date": "2025-05-22"} 16
Property Graph Index でインデックス生成 17
Streamlit で単答チャットアプリ化 18
以上「序章」でした • 詳細はこちらで話す予定 ◦ 第 53 回 PostgreSQL アンカンファレンス@オンライン(6/24) https://pgunconf.connpass.com/event/355128/
• GitHub リポジトリ ◦ https://github.com/hmatsu47/llama-index-graph-stores-postgres ◦ https://github.com/hmatsu47/llama_index_property_graph_test ◦ https://github.com/hmatsu47/llama_index/issues?q=is%3Aissue%20state %3Aclosed 19