Upgrade to PRO for Only $50/Yearโ€”Limited-Time Offer! ๐Ÿ”ฅ

Periodic Multi-Agent Path Planning

Avatar for Hziwara Hziwara
January 25, 2023

Periodic Multi-Agent Pathย Planning

Kazumi Kasaura*, Ryo Yonetani*, Mai Nishimura*
*OMRON SINIC X Corporation
Presented at AAAI Conference on Artificial Intelligence (AAAI) 2023

Avatar for Hziwara

Hziwara

January 25, 2023
Tweet

More Decks by Hziwara

Other Decks in Technology

Transcript

  1. ยฉ OMRON Corporation All Rights Reserved Periodic Multi-Agent Path Planning

    Kazumi Kasaura, Ryo Yonetani, Mai Nishimura OMRON SINIC X
  2. ยฉ OMRON Corporation All Rights Reserved Motivation: Path Planning for

    Streams of Agents Streams of agents enter at random times and move to goals Traffic congestion occurs We aim to improve the throughput
  3. ยฉ OMRON Corporation All Rights Reserved Our proposal: Periodic Approximation

    We assume that agents appear periodically and generate a periodic plan beforehand and assign periodic trajectories to agents โ†’Higher throughput
  4. ยฉ OMRON Corporation All Rights Reserved Periodic MAPP To obtain

    periodic plans, we solve periodic MAPP, a variant of Multi-Agent Path Planning (MAPP). Solution Problem
  5. ยฉ OMRON Corporation All Rights Reserved Problem definition: periodic MAPP

    Given: Environment E Pairs (๐‘ 1 , ๐‘”1 ), โ€ฆ , (๐‘ ๐‘ , ๐‘”๐‘ ) of starts and goals Want: Collision-free trajectories for agents appearing periodically with a user-defined period Objective: Period that is as small as possible
  6. ยฉ OMRON Corporation All Rights Reserved Cycle Agents with the

    same starts have not necessarily the same trajectory We fix cycle ๐‘€ and plan ๐‘€ trajectories for each pair M=1 M=2
  7. ยฉ OMRON Corporation All Rights Reserved Formulation of conditions ๐œ:

    Period, ๐‘Ÿ: Radius of Agents A set of ๐‘๐‘€ trajectories ฮณ๐‘›,๐‘š : 0, ๐‘‡๐‘›,๐‘š โ†’ ๐ธ (1 โ‰ค ๐‘› โ‰ค ๐‘, 0 โ‰ค ๐‘š < ๐‘€ ) s. t. โ€ข ๐›พ๐‘›,๐‘š 0 = ๐‘ ๐‘› and ๐›พ๐‘›,๐‘š (๐‘‡๐‘›,๐‘š ) = ๐‘”๐‘› (start and goal condition) โ€ข ๐‘‘๐›พ ๐‘‘๐‘ก โ‰ค ๐‘ฃ๐‘š๐‘Ž๐‘ฅ (Maximum velocity) โ€ข ๐‘‘๐‘–๐‘ ๐‘ก๐ธ ๐›พ๐‘›,๐‘š ๐‘ก โ‰ฅ ๐‘Ÿ (Clearance from boundaries) โ€ข ๐‘š โˆ’ ๐‘šโ€ฒ ๐œ + ๐‘ก โˆ’ ๐‘กโ€ฒ โˆˆ ๐‘€๐œ๐’ and ๐‘›, ๐‘š, ๐‘ก โ‰  ๐‘›โ€ฒ, ๐‘šโ€ฒ, ๐‘กโ€ฒ โ†’ ๐›พ๐‘›,๐‘š ๐‘ก โˆ’ ๐›พ๐‘›โ€ฒ,๐‘šโ€ฒ (๐‘กโ€ฒ) โ‰ฅ 2๐‘Ÿ (Collision-free)
  8. ยฉ OMRON Corporation All Rights Reserved Solution Strategy for Periodic

    MAPP Generating an initial plan with a large period โ†’ optimizing the plan while decreasing the period Initial plan Optimized plan
  9. ยฉ OMRON Corporation All Rights Reserved Solution Strategy for Periodic

    MAPP Generating an initial plan with a small agent radius โ†’ optimizing the plan while increasing the radius to the original Initial plan Optimized plan
  10. ยฉ OMRON Corporation All Rights Reserved Optimization Method We approximate

    the plan optimization as continuous optimization problem. ๐›พ๐‘›,๐‘š is represented by sequences of timed locations ๐‘ฅ๐‘›,๐‘š,0 , 0 , ๐‘ฅ๐‘›,๐‘š,0 , ฮ”๐‘ก๐‘›,๐‘š , โ€ฆ , (๐‘ฅ๐‘›,๐‘š,๐พ , ๐พฮ”๐‘ก๐‘›,๐‘š ) s. t. โ€ข ๐‘ฅ๐‘›,๐‘š,0 = ๐‘ ๐‘› and ๐‘ฅ๐‘›,๐‘š,๐พ = ๐‘”๐‘› (start and goal condition) โ€ข ๐‘ฃ๐‘›,๐‘š,๐‘˜ โ‰” ๐‘ฅ๐‘›,๐‘š,๐‘˜+1โˆ’๐‘ฅ๐‘›,๐‘š,๐‘˜ ฮ”๐‘ก๐‘›,๐‘š โ‰ค ๐‘ฃ๐‘š๐‘Ž๐‘ฅ (Maximum velocity) โ€ข ๐‘‘๐‘–๐‘ ๐‘ก๐ธ ๐‘ฅ๐‘›,๐‘š,๐‘˜ โ‰ฅ ๐‘Ÿ (Clearance from boundaries)
  11. ยฉ OMRON Corporation All Rights Reserved Optimization Method โ€ข Let

    r ๐‘ก โ‰” ๐‘ก โˆ’ ๐‘ก ๐‘€๐œ ๐‘€๐œ For all ๐‘›, ๐‘š, ๐‘˜, ๐‘›โ€™, ๐‘šโ€™, ๐‘˜โ€™ s. t. 0 โ‰ค r ๐‘š โˆ’ ๐‘šโ€ฒ ๐œ + ๐‘˜โˆ†๐‘ก๐‘›,๐‘š โˆ’ ๐‘˜โ€ฒโˆ†๐‘ก๐‘›โ€ฒ,๐‘šโ€ฒ < โˆ†๐‘ก๐‘›โ€ฒ,๐‘šโ€ฒ and (๐‘›, ๐‘š, ๐‘˜) โ‰  (๐‘›โ€ฒ, ๐‘šโ€ฒ, ๐‘˜โ€ฒ), ๐‘‘๐‘›,๐‘š,๐‘˜,๐‘›โ€ฒ,๐‘šโ€ฒ,๐‘˜โ€ฒ โ‰” ๐‘ฅ๐‘›,๐‘š,๐‘˜ โˆ’ ( 1 โˆ’ ๐›ผ ๐‘ฅ๐‘›โ€ฒ,๐‘šโ€ฒ,๐‘˜โ€ฒ + ๐›ผ๐‘ฅ๐‘›โ€ฒ,๐‘šโ€ฒ,๐‘˜โ€ฒ+1 ) โ‰ฅ 2๐‘Ÿ, where ๐›ผ โ‰” r ๐‘š โˆ’ ๐‘šโ€ฒ ๐œ + ๐‘˜โˆ†๐‘ก๐‘›,๐‘š โˆ’ ๐‘˜โ€ฒโˆ†๐‘ก๐‘›โ€ฒ,๐‘šโ€ฒ ฮ”๐‘ก๐‘›โ€ฒ,๐‘šโ€ฒ (Collision-free) (cf. prev. with ๐‘ก = ๐‘˜ฮ”๐‘ก๐‘›,๐‘š , ๐‘กโ€ฒ = ๐‘˜โ€ฒฮ”t๐‘›โ€ฒ,๐‘šโ€ฒ + ๐›ผ)
  12. ยฉ OMRON Corporation All Rights Reserved Optimization Method Constraints โ†’

    penalty function Objective: ๐œ โˆ’ 2๐‘Ÿ ๐‘ฃ๐‘š๐‘Ž๐‘ฅ 2 + ๐œŽ๐‘Ÿ ๐‘Ÿ โˆ’ ๐‘Ÿ0 2 + ๐œŽ๐‘ก ๐พ ฯƒ ๐‘ฃ๐‘›,๐‘š,๐‘˜ 2 + ๐œŽ๐‘ฃ ๐พ เท max 0, ๐‘ฃ๐‘›,๐‘š,๐‘˜ โˆ’ ๐‘ฃ๐‘š๐‘Ž๐‘ฅ 2 + ๐œŽ๐‘œ ๐พ เท max 0, ๐‘‘๐‘–๐‘ ๐‘ก๐ธ ๐‘ฅ๐‘›,๐‘š,๐‘˜ โˆ’1 โˆ’ ๐‘Ÿโˆ’1 2 + ๐œŽ๐‘ ๐พ เท max 0, ๐‘‘๐‘›,๐‘š,๐‘˜,๐‘›โ€ฒ,๐‘šโ€ฒ,๐‘˜โ€ฒ โˆ’ (2๐‘Ÿ)โˆ’1 2 . where ๐œŽ๐‘Ÿ , ๐œŽ๐‘ก , ๐œŽ๐‘ฃ , ๐œŽ๐‘œ and ๐œŽ๐‘ are constants. ๐œŽ๐‘Ÿ , ๐œŽ๐‘ฃ , ๐œŽ๐‘œ , ๐œŽ๐‘ โ†’ โˆž and ๐œŽ๐‘ก โ†’ 0
  13. ยฉ OMRON Corporation All Rights Reserved Application to Online MAPP

    Online MAPP โ€ข Pairs of starts and goals are given previously โ€ข Agents appear at random times โ€ข Agents can wait in queue before entering
  14. ยฉ OMRON Corporation All Rights Reserved Experiments: Cycles and Initial

    Plans ๐‘€ โˆˆ {1, 2, 3} Initial plans: ๐‘€ agents of one direction pass, ๐‘€ agents of another direction pass alternately M=1 M=2 M=3
  15. ยฉ OMRON Corporation All Rights Reserved Experiments in Online MAPP

    Comparison with first-come first-serve (FCFS) strategy Time intervals of agents: 1.0 + exponential distribution FCFS Our Method
  16. ยฉ OMRON Corporation All Rights Reserved Results: Throughput Our method

    achieved higher throughput than FCFS method in 5/6 environments.
  17. ยฉ OMRON Corporation All Rights Reserved Extension and Future Work

    โ€ข Simple geometry and kinematics for agents โ†’ More realistic models of agents by modifying constraints โ€ข Assumption that agents can trace planned trajectory exactly โ†’ Consideration for uncertainties โ€ข Investigation of values of cycle and initial plans
  18. ยฉ OMRON Corporation All Rights Reserved Conclusion โ€ข Definition of

    periodic MAPP โ€ข Collision-free trajectories for periodically appearing agents โ€ข Period is as small as possible โ€ข Planning for fixed cycle โ€ข A method to solve periodic MAPP โ€ข Generating an initial plan with relaxed constraints โ€ข Optimizing the plan by solving continuous optimization problem โ€ข To use a solution of periodic MAPP for online MAPP โ†’ higher throughput than the baseline