Global Ocean Health Index results for 2018

Global Ocean Health Index results for 2018

A presentation given for an NCEAS roundtable that highlights some of the results from the 2018 global Ocean Health Index (OHI) assessment.

199a46c4cfa389da011a108479f0d52e?s=128

Jamie Afflerbach

December 05, 2018
Tweet

Transcript

  1. OHI 2018 Results Jamie Afflerbach (and OHI team) December 5,

    2018 National Center for Ecological Analysis & Synthesis @jafflerbach @OHIscience http://ohi-science.org/
  2. Outline 1. Global Scores 2. What is the OHI 3.

    Share some results 4. Updates to data & methods for 2018 5. Data discussion
  3. 2018 Global Ocean Health Index

  4. 2018 Global Ocean Health Index

  5. Georgia +2.33 Eritrea -3.05 Marshall Islands -2.08

  6. What does the Ocean Health Index measure?

  7. Halpern et al. in prep

  8. None
  9. Employment Cultural Identity and Sense of Place Food Provision

  10. None
  11. None
  12. None
  13. 2018 Global Ocean Health Index 79 45 78 51 25

    83 91 71 61 67 88 77 54 86
  14. Global Average: 71

  15. India 22.7 Greenland 94.4 Brazil 59 Global Average: 71

  16. Global Average: 87

  17. Jan Mayen 57 Nigeria 64.7 Australia 93.4 Sierra Leone 66.7

    Global Average: 71
  18. Global Average: 51

  19. Somalia 13 Norway 70 USA 68 New Zealand 68 Tonga

    19 Japan 44.8 Global Average: 51
  20. Global Average: 61

  21. Canada 28 French Polynesia 0 Cook Islands 100 Indonesia 64

    Global Average: 61
  22. Updates for 2018

  23. Food Provision Wild-Caught Fisheries Mariculture

  24. Mariculture Photo Credit: Jean-Marie Hullot

  25. Wild-Caught Fisheries

  26. Wild-Caught Fisheries

  27. Wild-Caught Fisheries Watson & Tidd 2018

  28. None
  29. Biodiversity - Species

  30. None
  31. None
  32. Comprehensively assessed Non-comprehensively assessed All assessed species

  33. None
  34. “What about Climate Change?” “Your fisheries scores are wrong, fish

    stocks are well-managed and doing great in country X” “The Ocean Health Index is the Global Assessment” “Why aren’t you using this dataset”
  35. None
  36. Intermediate data layers

  37. What would you do with this data?

  38. https://goo.gl/pHLkjJ

  39. Thank you!