Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Scientific Visualization with GR

Scientific Visualization with GR

Python developers often get frustrated when managing visualization packages that cover the specific needs in scientific or engineering environments. The GR framework could help. GR is a library for visualization applications ranging from publication-quality 2D graphs to the creation of complex 3D scenes and can easily be integrated into existing Python environments or distributions like Anaconda.

Josef Heinen

July 26, 2014
Tweet

More Decks by Josef Heinen

Other Decks in Programming

Transcript

  1. Scientific Visualization with GR July 25, 2014 10:00 - 10:30

    ! Berlin | EuroPython 2014 | Josef Heinen Member of the Helmholtz Association
  2. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Scientists need easy-to-use methods for: ✓ visualizing and analyzing two- and three-dimensional data sets, possibly with a dynamic component ✓ creating publication-quality graphics and videos ✓ making glossy figures for high impact journals or press releases 2 Motivation
  3. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems ✓ line / bar graphs, curve plots ✓ scatter plots ✓ contour plots ✓ vector / streamline plots ✓ surface plots, mesh rendering with iso-surface generation ✓ volume graphics ✓ molecule plots 3 Scientific plotting methods
  4. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Matplotlib — de-facto standard (“workhorse”) Mayavi2 (mlab) — powerful, but overhead from VTK VTK — versatile, but difficult to learn Vispy, OpenGL — fast, but low(est)-level API Qwt / QwtPlot3D — currently unmaintained Scientific visualization solutions 4 qwt
  5. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Problems so far ✓ separated 2D and (hardware accelerated) 3D world ✓ some graphics backends "only" produce pictures (figures) 
 ➟ no presentation of continuous data streams ✓ bare minimum level of interoperability 
 ➟ limited user interaction ✓ poor performance on large data sets ✓ APIs are partly device- and platform-dependent
 5 … these problems are not specific to Python !
  6. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems … so let’s get Python up and running 6 IPython + NumPy + SciPy + Bokeh + Numba + PyQt4 + Matplotlib (* Anaconda (Accelerate) is a (commercial) Scientific Python distribution from Continuum Analytics What else do we need? % bash Anaconda-2.x.x-[Linux|MacOSX]-x86[_64].sh % conda update conda % conda update anaconda
  7. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems … achieve more Python performance Numba: compiles annotated Python and NumPy code to LLVM (through decorators) ✓ just-in-time compilation ✓ vectorization ✓ parallelization NumbaPro: adds support for multicore and GPU architectures 7 (* Numba (Pro) is part of Anaconda (Accelerate), a (commercial) Python distribution from Continuum Analytics performance
  8. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems … achieve more graphics performance and interop GR framework: a universal framework for cross-platform visualization ✓ procedural graphics backend ➟ presentation of continuous data streams ✓ builtin device drivers ➟ coexistent 2D and 3D world ✓ interoperability with GUI toolkits ➟ good user interaction 8 % git clone https://github.com/jheinen/gr % cd gr; make install or % pip install gr or % conda install -c https://conda.binstar.org/jheinen gr
  9. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems … so let’s complete our Scientific Python distribution 9 PyOpenGL + PyOpenCL + PyCUDA + PyGTK/wxWidgets IPython + NumPy + SciPy + Bokeh + Numba + PyQt4 + GR framework ➟ more performance and interoperability
  10. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Presentation of continuous data streams in 2D ... 10 from numpy import sin, cos, sqrt, pi, array import gr ! def rk4(x, h, y, f): k1 = h * f(x, y) k2 = h * f(x + 0.5 * h, y + 0.5 * k1) k3 = h * f(x + 0.5 * h, y + 0.5 * k2) k4 = h * f(x + h, y + k3) return x + h, y + (k1 + 2 * (k2 + k3) + k4) / 6.0 ! def damped_pendulum_deriv(t, state): theta, omega = state return array([omega, -gamma * omega - 9.81 / L * sin(theta)]) ! def pendulum(t, theta, omega) gr.clearws() ... # draw pendulum (pivot point, rod, bob, ...) gr.updatews() ! theta = 70.0 # initial angle gamma = 0.1 # damping coefficient L = 1 # pendulum length t = 0 dt = 0.04 state = array([theta * pi / 180, 0]) ! while t < 30: t, state = rk4(t, dt, state, damped_pendulum_deriv) theta, omega = state pendulum(t, theta, omega)
  11. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems ... with full 3D functionality 11 from numpy import sin, cos, array import gr import gr3 ! def rk4(x, h, y, f): k1 = h * f(x, y) k2 = h * f(x + 0.5 * h, y + 0.5 * k1) k3 = h * f(x + 0.5 * h, y + 0.5 * k2) k4 = h * f(x + h, y + k3) return x + h, y + (k1 + 2 * (k2 + k3) + k4) / 6.0 ! def pendulum_derivs(t, state): t1, w1, t2, w2 = state a = (m1 + m2) * l1 b = m2 * l2 * cos(t1 - t2) c = m2 * l1 * cos(t1 - t2) d = m2 * l2 e = -m2 * l2 * w2**2 * sin(t1 - t2) - 9.81 * (m1 + m2) * sin(t1) f = m2 * l1 * w1**2 * sin(t1 - t2) - m2 * 9.81 * sin(t2) return array([w1, (e*d-b*f) / (a*d-c*b), w2, (a*f-c*e) / (a*d-c*b)]) ! def double_pendulum(theta, length, mass): gr.clearws() gr3.clear() ! ... # draw pivot point, rods, bobs (using 3D meshes) ! gr3.drawimage(0, 1, 0, 1, 500, 500, gr3.GR3_Drawable.GR3_DRAWABLE_GKS) gr.updatews()
  12. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems ... in real-time 12 import wave, pyaudio import numpy import gr ! SAMPLES=1024 FS=44100 # Sampling frequency ! f = [FS/float(SAMPLES)*t for t in range(1, SAMPLES/2+1)] ! wf = wave.open('Monty_Python.wav', 'rb') pa = pyaudio.PyAudio() stream = pa.open(format=pa.get_format_from_width(wf.getsampwidth()), channels=wf.getnchannels(), rate=wf.getframerate(), output=True) ! ... ! data = wf.readframes(SAMPLES) while data != '' and len(data) == SAMPLES * wf.getsampwidth(): stream.write(data) amplitudes = numpy.fromstring(data, dtype=numpy.short) power = abs(numpy.fft.fft(amplitudes / 65536.0))[:SAMPLES/2] ! gr.clearws() ... gr.polyline(SAMPLES/2, f, power) gr.updatews() data = wf.readframes(SAMPLES)
  13. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems ... and in 3D 13 ... ! spectrum = np.zeros((256, 64), dtype=float) t = -63 dt = float(SAMPLES) / FS df = FS / float(SAMPLES) / 2 / 2 ! data = wf.readframes(SAMPLES) while data != '' and len(data) == SAMPLES * wf.getsampwidth(): stream.write(data) amplitudes = np.fromstring(data, dtype=np.short) power = abs(np.fft.fft(amplitudes / 32768.0))[:SAMPLES/2] ! gr.clearws() spectrum[:, 63] = power[:256] spectrum = np.roll(spectrum, 1) gr.setcolormap(-113) gr.setviewport(0.05, 0.95, 0.1, 1) gr.setwindow(t * dt, (t + 63) * dt, 0, df) gr.setscale(gr.OPTION_FLIP_X) gr.setspace(0, 256, 30, 80) gr3.surface((t + np.arange(64)) * dt, np.linspace(0, df, 256), spectrum, 4) gr.setscale(0) gr.axes3d(0.2, 0.2, 0, (t + 63) * dt, 0, 0, 5, 5, 0, -0.01) gr.titles3d('t [s]', 'f [kHz]', '') gr.updatews() ! data = wf.readframes(SAMPLES) t += 1
  14. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems ... with user interaction 14 import gr3 from OpenGL.GLUT import * # ... Read MRI data
 width = height = 1000 isolevel = 100 angle = 0 ! def display(): vertices, normals = gr3.triangulate(data, (1.0/160, 1.0/160, 1.0/200), (-0.5, -0.5, -0.5), isolevel) mesh = gr3.createmesh(len(vertices)*3, vertices, normals, np.ones(vertices.shape)) gr3.drawmesh(mesh, 1, (0,0,0), (0,0,1), (0,1,0), (1,1,1), (1,1,1)) gr3.cameralookat(-2*math.cos(angle), -2*math.sin(angle), -0.25, 0, 0, -0.25, 0, 0, -1) gr3.drawimage(0, width, 0, height, width, height, gr3.GR3_Drawable.GR3_DRAWABLE_OPENGL) glutSwapBuffers() gr3.clear() gr3.deletemesh(ctypes.c_int(mesh.value)) def motion(x, y): isolevel = 256*y/height angle = -math.pi + 2*math.pi*x/width glutPostRedisplay() glutInit() glutInitWindowSize(width, height) glutCreateWindow("Marching Cubes Demo") ! glutDisplayFunc(display) glutMotionFunc(motion) glutMainLoop()
  15. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Performance optimizations ✓ NumPy
 module for handling multi-dimensional arrays (vector operations on ndarrays) ✓ Numba (Anaconda) ✓ just-in-time compilation driven by @autojit- or @jit-decorators (LLVM) ✓ vectorization of ndarray based functions (ufuncs) driven by @vectorize-decorators ✓ Numba Pro (Anaconda Accelerate) ✓ parallel loops and ufuncs ✓ execution of ufunfs on GPUs ✓ “Python” GPU kernels ✓ GPU optimized libraries (cuBLAS, cuFFT, cuRAND) 15 performance
  16. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Particle simulation 16 import numpy as np ! ! N = 300 # number of particles M = 0.05 * np.ones(N) # masses size = 0.04 # particle size ! ! def step(dt, size, a): a[0] += dt * a[1] # update positions ! n = a.shape[1] D = np.empty((n, n), dtype=np.float) for i in range(n): for j in range(n): dx = a[0, i, 0] - a[0, j, 0] dy = a[0, i, 1] - a[0, j, 1] D[i, j] = np.sqrt(dx*dx + dy*dy) ! ... # find pairs of particles undergoing a collision ... # check for crossing boundary return a ... ! a[0, :] = -0.5 + np.random.random((N, 2)) # positions a[1, :] = -0.5 + np.random.random((N, 2)) # velocities a[0, :] *= (4 - 2*size) dt = 1. / 30 ! while True: a = step(dt, size, a) .... ! from numba.decorators import autojit ! ! ! ! ! @autojit ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
  17. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Mandelbrot set 17 from numbapro import vectorize import numpy as np ! @vectorize(['uint8(uint32, f8, f8, f8, f8, uint32, uint32, uint32)'], target='gpu') def mandel(tid, min_x, max_x, min_y, max_y, width, height, iters): pixel_size_x = (max_x - min_x) / width pixel_size_y = (max_y - min_y) / height ! x = tid % width y = tid / width ! real = min_x + x * pixel_size_x imag = min_y + y * pixel_size_y ! c = complex(real, imag) z = 0.0j ! for i in range(iters): z = z * z + c if (z.real * z.real + z.imag * z.imag) >= 4: return i ! return 255 ! ! def create_fractal(min_x, max_x, min_y, max_y, width, height, iters): tids = np.arange(width * height, dtype=np.uint32) return mandel(tids, np.float64(min_x), np.float64(max_x), np.float64(min_y), np.float64(max_y), np.uint32(height), np.uint32(width), np.uint32(iters))
  18. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Success stories (I) 18 Live Display for KWS-2 small-angle neutron diffractometer operated by JCNS at FRM II
  19. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Success stories (II) 19 World’s most powerful laboratory small- angle X-ray scattering facility at Forschungszentrum Jülich GR (embedded into Qt4) as a replacement for a proprietary solution
  20. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Success stories (III) 20 NICOS a network-based control system written for neutron scattering instruments at the FRM II GR (qtgr) as a replacement for PyQwt
  21. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Case study 21 BornAgain A software to simulate and fit neutron and x-ray scattering at grazing incidence (GISANS and GISAXS), using distorted- wave Born approximation (DWBA) Nframes = 100 radius = 1 height = 4 distance = 5 ! def RunSimulation(): # defining materials mAir = HomogeneousMaterial("Air", 0.0, 0.0) mSubstrate = HomogeneousMaterial("Substrate", 6e-6, 2e-8) mParticle = HomogeneousMaterial("Particle", 6e-4, 2e-8) # collection of particles cylinder_ff = FormFactorCylinder(radius, height) cylinder = Particle(mParticle, cylinder_ff) particle_layout = ParticleLayout() particle_layout.addParticle(cylinder) # interference function interference = InterferenceFunction1DParaCrystal(distance, 3 * nanometer) particle_layout.addInterferenceFunction(interference) # air layer with particles and substrate form multi layer air_layer = Layer(mAir) air_layer.setLayout(particle_layout) substrate_layer = Layer(mSubstrate) multi_layer = MultiLayer() multi_layer.addLayer(air_layer) multi_layer.addLayer(substrate_layer) # build and run experiment simulation = Simulation() simulation.setDetectorParameters(250, -4*degree, 4*degree, 250, 0*degree, 8*degree) simulation.setBeamParameters(1.0 * angstrom, 0.2 * degree, 0.0 * degree) simulation.setSample(multi_layer) simulation.runSimulation() return simulation.getIntensityData().getArray() def SetParameters(i): radius = (1. + (3.0/Nframes)*i) * nanometer height = (1. + (4.0/Nframes)*i) * nanometer distance = (10. - (1.0/Nframes)*i) * nanometer ! for i in range(100): SetParameters(i) result = RunSimulation() gr.pygr.imshow(numpy.log10(numpy.rot90(result, 1)), cmap=gr.COLORMAP_PILATUS) GR (pygr) as a replacement for matplotlib
  22. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Comparison of the source code if __name__ == '__main__': files = [] fig = pylab.figure(figsize=(5,5)) ax = fig.add_subplot(111) for i in range(Nframes): SetParameters(i) result = RunSimulation() + 1 # for log scale ax.cla() im = ax.imshow(numpy.rot90(result, 1), vmax=1e3, norm=matplotlib.colors.LogNorm(), extent=[-4.0, 4.0, 0, 8.0]) fname = '_tmp%03d.png'%i fig.savefig(fname) files.append(fname) ! os.system("mencoder 'mf://_tmp*.png' -mf type=png:fps=10 -ovc lavc -lavcopts vcodec=wmv2 -oac copy -o animation.mpg") os.system("rm _tmp*") 22 if __name__ == '__main__': for i in range(Nframes): SetParameters(i) result = RunSimulation() + 1 # for log scale gr.pygr.imshow(numpy.log10(numpy.rot90(result, 1)), cmap=gr.COLORMAP_PILATUS) export GKS_WSTYPE=mov
  23. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Conclusion ✓ The use of Python with the GR framework and Numba (Pro) extensions allows the realization of high-performance visualization applications in scientific and technical environments ✓ The GR framework can seamlessly be integrated into any Python environment, e.g. Anaconda, by using the ctypes mechanism ✓ Conda / Anaconda provide an easy to manage / ready-to-use Python distribution that can be enhanced by the use of the GR framework with its functions for real-time or 3D visualization applications 23 What’s next?
  24. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Coming soon: Python moldyn package … 24
  25. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems … with video and POV-ray output 25
  26. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems … in highest resolution 26
  27. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Future plans: combine the power of matplotlib and GR matplotlib backend Idea: use GR as a matplotlib backend ➟ speed up matplotlib … there are even more challenges, e.g an integration of bokeh
  28. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Resources ✓ Website: http://gr-framework.org ✓ Git Repository: http://github.com/jheinen/gr ✓ PyPI: https://pypi.python.org/pypi/gr ✓ Binstar: https://binstar.org/jheinen/gr ✓ Talk: Scientific Visualization with GR 28
  29. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Visualization software could be even better if … ✓ the prerequisites for an application would be described in terms of usability, responsiveness and interoperability (instead of list of software dependencies) ✓ native APIs would be used instead of GUI toolkits ✓ release updates would not break version compatibility 29 Closing words
  30. July 25, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Thank you for your attention Contact: [email protected]
 @josef_heinen! ! Thanks to: Florian Rhiem, Ingo Heimbach, Christian Felder, David Knodt, Jörg Winkler, Fabian Beule, Marcel Dück, Marvin Goblet, et al. 30