Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Scientific Visualization

Scientific Visualization

A talk by Josef Heinen at a Scientific Visualization Workshop presented 05/22/2014 -- Tags: Scientific Visualization • Python • Anaconda • Numba • Instrumentation Software • GR framework (http://bit.ly/1kkYcwZ)

Josef Heinen

June 28, 2014
Tweet

More Decks by Josef Heinen

Other Decks in Programming

Transcript

  1. Scientific Visualization May 22, 2014 ! PGI-1 / IAS-1 |

    Scientific Visualization Workshop | Josef Heinen Member of the Helmholtz Association
  2. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems ✓ Motivation ✓ Scientific visualization software ✓ Visualization with Python ✓ Python performance optimizations ✓ Development tools ✓ Conclusion ✓ Future plans ✓ Discussion 2 Outline
  3. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems We need easy-to-use methods for: ✓ visualizing and analyzing two- and three- dimensional data sets, perhaps with a dynamic component ✓ creating publication-quality graphics ✓ making glossy figures for high impact journals or press releases 3 Motivation
  4. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems ✓ line / bar graphs, curve plots ✓ scatter plots ✓ surface plots, mesh rendering with iso-surface generation ✓ contour plots ✓ vector / streamline plots ✓ volume graphics ✓ molecule plots 4 Scientific plotting methods
  5. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Scientific visualization tools ✓ Gnuplot ✓ Xmgrace ✓ OpenDX ✓ ParaView ✓ Mayavi2 ✓ MATLAB ✓ Mathematica ✓ Octave, Scilab, Freemat 5
  6. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems … drawbacks ✓ Gnuplot — limited functionality ✓ Xmgrace — too old, requires OSF/Motif (X11) ✓ OpenDX — no longer maintained (2007) ✓ ParaView — not very intuitive ✓ Mayavi2 — not very responsive ✓ MATLAB — 5 floating, 3 user licenses (16K €/year) ✓ Mathematica — expensive (~2.500 €/user) ✓ Octave, Scilab, Freemat — no syntax compatibility 6
  7. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Scientific visualization APIs ✓ Matplotlib ✓ mlab, VTK ✓ OpenGL ✓ pgplot ✓ PyQtGraph ✓ PyQwt / PyQwt3D 7
  8. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Scientific visualization APIs ✓ Matplotlib — de-facto standard (“workhorse”) ✓ mlab, VTK — versatile, but difficult to learn; slow ✓ OpenGL — large and complex ✓ pgplot — too old ✓ PyQtGraph — no yet mature ✓ PyQwt / PyQwt3D — currently unmaintained 8
  9. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Remaining solutions GUI + API: ✓ ParaView ✓ Mayavi2 API: ✓ matplotlib ✓ n.n. ← Let’s talk about this later … 9 both based on VTK }
  10. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Problems so far ✓ separated 2D and (hardware accelerated) 3D world ✓ some graphics backends "only" produce pictures 
 ➟ no presentation of continuous data streams ✓ bare minimum level of interoperability 
 ➟ limited user interaction ✓ poor performance on large data sets ✓ APIs are partly device- and platform-dependent 13
  11. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Isn’t there an all-in-one solution? 14 All these components provide powerful APIs
 for Python ! ! There must be a reason for that …
  12. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems … so let’s push for Python ✓ free and open ✓ dynamic typed language, easy to understand ✓ powerful modules for science, technology, engineering and mathematics (STEM): NumPy, SciPy, Pandas, SymPy ✓ great visualization libraries: Matplotlib, MayaVi, VTK, PyOpenGL ✓ techniques to boost execution speed: PyPy, Cython, PyOpenCL, PyCUDA, Numba ✓ wrapper for GUI toolkits: PyQt4, PyGTK, wxWidgets 15
  13. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems … get it up and running 16 IPython + NumPy + SciPy + Matplotlib
 What else do we need?
  14. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems … achieve more Python performance Numba: compiles annotated Python and NumPy code to LLVM (through decorators) ✓ just-in-time compilation ✓ vectorization ✓ parallelization NumbaPro: adds support for multicore and GPU architectures 17 (* Numba (Pro) is part of Anaconda (Accelerate), a (commercial) Python distribution from Continuum Analytics
  15. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems … achieve more graphics performance and interop GR framework: a universal framework for cross- platform visualization (* ✓ procedural graphics backend
 ➟ presentation of continuous data streams ✓ coexistent 2D and 3D world ✓ interoperability with GUI toolkits
 ➟ good user interaction 18 (* The GR framework is an in-house project initiated by the group Scientific IT Systems
  16. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems “Our” Scientific Python distribution 19 IPython + NumPy + SciPy + Numba + GR framework + PyOpenGL + PyOpenCL + PyCUDA + PyQt4/PyGTK/wxWidgets
 
 ➟ more performance and interoperability
  17. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems How can we use it? ✓ GR framework (and other mentioned packages) available on all Linux and OS X machines
 (Python and IPython) at PGI / JCNS:
 % gr
 % igr" ✓ GR framework can also be used with Anaconda:
 % anaconda ✓ Windows version(s) on request 20
  18. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Batteries included ✓ NumPy — package for numerical computation ✓ SciPy — collection of numerical algorithms and specific toolboxes ✓ Matplotlib — popular plotting package ✓ Pandas — provides high-performance, easy to use data structures ✓ SymPy — symbolic mathematics and computer algebra ✓ IPython — rich interactive interface (including IPython notebook) ✓ Mayavi2 — 3D visualization framework, based on VTK ✓ scikit-image — algorithms for image processing ✓ h5py, PyTables — managing hierarchical datasets (HDF5) 21
  19. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Visualization with Python 22 GKS logical device drivers C / C++ GKS GR OpenGL (WGL / CGL / GLX) POV-Ray
 generation off-screen rendering direct rendering Browser JavaScript
 generation WebGL IPython / PyPy/ Anaconda Win32 X11 GKSTerm gksqt Java gksweb Qt Quartz PDF C / ObjC OpenGL ES glgr / iGR App socket
 communication Qt / wx
 event loop 0MQ OpenGL More logical device drivers / plugins: – CGM, GKSM, GIF, RF, UIL – WMF, Xfig – GS (BMP, JPEG, PNG, TIFF) ... HTML5 wx POV-Ray GLUT wxGLCanvas QGLWidget ... SVG PS MOV GR3 Highlights: – simultaneous output to multiple output devices – direct generation of MPEG4 image sequences – flicker-free display ("double buffering")
  20. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Presentation of continuous data streams in 2D ... 23 from numpy import sin, cos, sqrt, pi, array import gr ! def rk4(x, h, y, f): k1 = h * f(x, y) k2 = h * f(x + 0.5 * h, y + 0.5 * k1) k3 = h * f(x + 0.5 * h, y + 0.5 * k2) k4 = h * f(x + h, y + k3) return x + h, y + (k1 + 2 * (k2 + k3) + k4) / 6.0 ! def damped_pendulum_deriv(t, state): theta, omega = state return array([omega, -gamma * omega - 9.81 / L * sin(theta)]) ! def pendulum(t, theta, omega) gr.clearws() ... # draw pendulum (pivot point, rod, bob, ...) gr.updatews() ! theta = 70.0 # initial angle gamma = 0.1 # damping coefficient L = 1 # pendulum length t = 0 dt = 0.04 state = array([theta * pi / 180, 0]) ! while t < 30: t, state = rk4(t, dt, state, damped_pendulum_deriv) theta, omega = state pendulum(t, theta, omega)
  21. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems ... with full 3D functionality 24 from numpy import sin, cos, array import gr, gr3 ! def rk4(x, h, y, f): k1 = h * f(x, y) k2 = h * f(x + 0.5 * h, y + 0.5 * k1) k3 = h * f(x + 0.5 * h, y + 0.5 * k2) k4 = h * f(x + h, y + k3) return x + h, y + (k1 + 2 * (k2 + k3) + k4) / 6.0 ! def pendulum_derivs(t, state): t1, w1, t2, w2 = state a = (m1 + m2) * l1 b = m2 * l2 * cos(t1 - t2) c = m2 * l1 * cos(t1 - t2) d = m2 * l2 e = -m2 * l2 * w2**2 * sin(t1 - t2) - 9.81 * (m1 + m2) * sin(t1) f = m2 * l1 * w1**2 * sin(t1 - t2) - m2 * 9.81 * sin(t2) return array([w1, (e*d-b*f) / (a*d-c*b), w2, (a*f-c*e) / (a*d-c*b)]) ! def double_pendulum(theta, length, mass): gr.clearws() gr3.clear() ! ... # draw pivot point, rods, bobs (using 3D meshes) ! gr3.drawimage(0, 1, 0, 1, 500, 500, gr3.GR3_Drawable.GR3_DRAWABLE_GKS) gr.updatews()
  22. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems ... in real-time 25 import wave, pyaudio import numpy import gr ! SAMPLES=1024 FS=44100 # Sampling frequency ! f = [FS/float(SAMPLES)*t for t in range(1, SAMPLES/2+1)] ! wf = wave.open('Monty_Python.wav', 'rb') pa = pyaudio.PyAudio() stream = pa.open(format=pa.get_format_from_width(wf.getsampwidth()), channels=wf.getnchannels(), rate=wf.getframerate(), output=True) ! ... ! data = wf.readframes(SAMPLES) while data != '' and len(data) == SAMPLES * wf.getsampwidth(): stream.write(data) amplitudes = numpy.fromstring(data, dtype=numpy.short) power = abs(numpy.fft.fft(amplitudes / 65536.0))[:SAMPLES/2] ! gr.clearws() ... gr.polyline(SAMPLES/2, f, power) gr.updatews() data = wf.readframes(SAMPLES)
  23. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems ... with user interaction 26 import gr3 from OpenGL.GLUT import * # ... Read MRI data
 width = height = 1000 isolevel = 100 angle = 0 ! def display(): vertices, normals = gr3.triangulate(data, (1.0/160, 1.0/160, 1.0/200), (-0.5, -0.5, -0.5), isolevel) mesh = gr3.createmesh(len(vertices)*3, vertices, normals, np.ones(vertices.shape)) gr3.drawmesh(mesh, 1, (0,0,0), (0,0,1), (0,1,0), (1,1,1), (1,1,1)) gr3.cameralookat(-2*math.cos(angle), -2*math.sin(angle), -0.25, 0, 0, -0.25, 0, 0, -1) gr3.drawimage(0, width, 0, height, width, height, gr3.GR3_Drawable.GR3_DRAWABLE_OPENGL) glutSwapBuffers() gr3.clear() gr3.deletemesh(ctypes.c_int(mesh.value)) def motion(x, y): isolevel = 256*y/height angle = -math.pi + 2*math.pi*x/width glutPostRedisplay() glutInit() glutInitWindowSize(width, height) glutCreateWindow("Marching Cubes Demo") ! glutDisplayFunc(display) glutMotionFunc(motion) glutMainLoop()
  24. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Scalable graphics in Web browsers 29
  25. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Import PDF 30 import gr (w, h, data) = gr.readimage("fs.pdf") if w < h: r = float(w)/h gr.setviewport(0.5*(1-r), 0.5*(1+r), 0, 1); else: r = float(h)/w gr.setviewport(0, 1, 0.5*(1-r), 0.5*(1+r)); gr.drawimage(0, 1, 0, 1, w, h, data) gr.updatews()
  26. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Success stories (I) 31 World’s most powerful laboratory small-angle X-ray scattering facility at Forschungszentrum Jülich
  27. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Success stories (II) 32 BornAgain A software to simulate and fit neutron and x-ray scattering at grazing incidence (GISANS and GISAXS), using distorted- wave Born approximation (DWBA) Nframes = 100 radius = 1 height = 4 distance = 5 ! def RunSimulation(): # defining materials mAir = HomogeneousMaterial("Air", 0.0, 0.0) mSubstrate = HomogeneousMaterial("Substrate", 6e-6, 2e-8) mParticle = HomogeneousMaterial("Particle", 6e-4, 2e-8) # collection of particles cylinder_ff = FormFactorCylinder(radius, height) cylinder = Particle(mParticle, cylinder_ff) particle_layout = ParticleLayout() particle_layout.addParticle(cylinder) # interference function interference = InterferenceFunction1DParaCrystal(distance, 3 * nanometer) particle_layout.addInterferenceFunction(interference) # air layer with particles and substrate form multi layer air_layer = Layer(mAir) air_layer.setLayout(particle_layout) substrate_layer = Layer(mSubstrate) multi_layer = MultiLayer() multi_layer.addLayer(air_layer) multi_layer.addLayer(substrate_layer) # build and run experiment simulation = Simulation() simulation.setDetectorParameters(250, -4*degree, 4*degree, 250, 0*degree, 8*degree) simulation.setBeamParameters(1.0 * angstrom, 0.2 * degree, 0.0 * degree) simulation.setSample(multi_layer) simulation.runSimulation() return simulation.getIntensityData().getArray() def SetParameters(i): radius = (1. + (3.0/Nframes)*i) * nanometer height = (1. + (4.0/Nframes)*i) * nanometer distance = (10. - (1.0/Nframes)*i) * nanometer ! for i in range(100): SetParameters(i) result = RunSimulation() gr.pygr.imshow(numpy.log10(numpy.rot90(result, 1)), cmap=gr.COLORMAP_PILATUS)
  28. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Success stories (III) 33 NICOS a network-based control system written for neutron scattering instruments at the FRM II
  29. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Coming soon:
 Python moldyn package … 34
  30. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems … in highest resolution 37
  31. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Performance optimizations ✓ NumPy
 module for handling multi-dimensional arrays (ndarray) ✓ Numba (Anaconda) ✓ just-in-time compilation driven by @autojit- or @jit- decorators (LLVM) ✓ vectorization of ndarray based functions (ufuncs) ✓ Numba Pro (Anaconda Accelerate) ✓ parallel loops and ufuncs ✓ execution of ufunfs on GPUs ✓ “Python” GPU kernels ✓ GPU optimized libraries (cuBLAS, cuFFT, cuRAND) 38
  32. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Realization ✓ NumPy
 vector operations on ndarrays instead of loops
 ➟ works in any NumPy Python environment ✓ Numba (Anaconda)
 add @jit and @autojit decorators
 ➟ useful for “many” function calls with “big” arrays ✓ Numba Pro (Anaconda Accelerate)
 add @vectorize decorators
 implementation of multi-core / GPU kernels in "Python" 
 switch to GPU-optimized features
 ➟ useful only for "large" arrays
 performance 39
  33. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Particle simulation 40 import numpy as np ! ! N = 300 # number of particles M = 0.05 * np.ones(N) # masses size = 0.04 # particle size ! ! def step(dt, size, a): a[0] += dt * a[1] # update positions ! n = a.shape[1] D = np.empty((n, n), dtype=np.float) for i in range(n): for j in range(n): dx = a[0, i, 0] - a[0, j, 0] dy = a[0, i, 1] - a[0, j, 1] D[i, j] = np.sqrt(dx*dx + dy*dy) ! ... # find pairs of particles undergoing a collision ... # check for crossing boundary return a ... ! a[0, :] = -0.5 + np.random.random((N, 2)) # positions a[1, :] = -0.5 + np.random.random((N, 2)) # velocities a[0, :] *= (4 - 2*size) dt = 1. / 30 ! while True: a = step(dt, size, a) .... ! from numba.decorators import autojit ! ! ! ! ! @autojit ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
  34. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Diffusion 41 import numpy ! ! dx = 0.005 dy = 0.005 a = 0.5 dt = dx*dx*dy*dy/(2*a*(dx*dx+dy*dy)) timesteps = 300 ! nx = int(1/dx) ny = int(1/dy) ui = numpy.zeros([nx,ny]) u = numpy.zeros([nx,ny]) ! ! def diff_step(u, ui): for i in range(1,nx-1): for j in range(1,ny-1): uxx = ( ui[i+1,j] - 2*ui[i,j] + ui[i-1, j] )/(dx*dx) uyy = ( ui[i,j+1] - 2*ui[i,j] + ui[i, j-1] )/(dy*dy) u[i,j] = ui[i,j]+dt*a*(uxx+uyy) ! ! ! for m in range(timesteps): diff_step (u, ui) ui = numpy.copy(u) ... ! from numba.decorators import jit ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! diff_step_numba = jit('void(f8[:,:], f8[:,:])')(diff_step) ! ! diff_step_numba(u, ui) !
  35. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Mandelbrot set 42 from numbapro import vectorize import numpy as np ! @vectorize(['uint8(uint32, f8, f8, f8, f8, uint32, uint32, uint32)'], target='gpu') def mandel(tid, min_x, max_x, min_y, max_y, width, height, iters): pixel_size_x = (max_x - min_x) / width pixel_size_y = (max_y - min_y) / height ! x = tid % width y = tid / width ! real = min_x + x * pixel_size_x imag = min_y + y * pixel_size_y ! c = complex(real, imag) z = 0.0j ! for i in range(iters): z = z * z + c if (z.real * z.real + z.imag * z.imag) >= 4: return i ! return 255 ! ! def create_fractal(min_x, max_x, min_y, max_y, width, height, iters): tids = np.arange(width * height, dtype=np.uint32) return mandel(tids, np.float64(min_x), np.float64(max_x), np.float64(min_y), np.float64(max_y), np.uint32(height), np.uint32(width), np.uint32(iters))
  36. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Performance comparison 43 Calculation of Mandelbrot set
  37. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Numba (Pro) review 44 ✓ functions with numerical code can be compiled with little effort and lead to impressive results ✓ numerical code should be separated from logic statements (and processing of lists, dictionaries) ✓ advanced Technologie due to LLVM intermediate language (LLVM IR) ✓ easy installation and maintenance
 Download link (Continuum Analytics): http://www.continuum.io/downloads % bash Anaconda-1.x.x-[Linux|MacOSX]-x86[_64].sh % conda update conda % conda update anaconda
  38. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Development tools 45 You can use your favorite editor and start Python in a shell. But
 the impatient user should chose a development environment:
  39. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Bokeh 50 import numpy as np from scipy.integrate import odeint from bokeh.plotting import * ! sigma = 10 rho = 28 beta = 8.0/3 theta = 3 * np.pi / 4 ! def lorenz(xyz, t): x, y, z = xyz x_dot = sigma * (y - x) y_dot = x * rho - x * z - y z_dot = x * y - beta* z return [x_dot, y_dot, z_dot] ! initial = (-10, -7, 35) t = np.arange(0, 100, 0.006) ! solution = odeint(lorenz, initial, t) ! x = solution[:, 0] y = solution[:, 1] z = solution[:, 2] xprime = np.cos(theta) * x - np.sin(theta) * y ! colors = ["#C6DBEF", "#9ECAE1", "#6BAED6", “#4292C6", "#2171B5", "#08519C", "#08306B",] ! output_file("lorenz.html", title="lorenz.py example") ! multi_line(np.array_split(xprime, 7), np.array_split(z, 7), line_color=colors, line_alpha=0.8, line_width=1.5, tools=“pan,wheel_zoom,box_zoom,reset,previewsave", title="lorenz example", name="lorenz_example") ! show() # open a browser
  40. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Resources ✓ Website: http://gr-framework.org ✓ PyPI: https://pypi.python.org/pypi/gr ✓ Git Repository: http://github.com/jheinen/gr ✓ Binstar: https://binstar.org/jheinen/gr ✓ Talk: Scientific Visualization Workshop (PDF, HTML) 51
  41. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Conclusion ✓ The use of Python with the GR framework and Numba (Pro) extensions allows the realization of high-performance visualization applications in scientific and technical environments ✓ The GR framework can seamlessly be integrated into "foreign" Python environments, e.g. Anaconda, by using the ctypes mechanism ✓ Anaconda (Accelerate) is an easy to manage (commercial) Python distribution that can be enhanced by the use of the GR framework with its functions for real-time or 3D visualization applications 56
  42. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Future plans ✓ implement your(!) feature requests ✓ moldyn package for Python ✓ more ✓ tutorials ✓ convenience functions ✓ documentation ✓ examples (gallery) ✓ IPython notebook integration ✓ Bokeh integration 57
  43. May 22, 2014 Josef Heinen, Forschungszentrum Jülich, Peter Grünberg Institute,

    Scientific IT Systems Thank you for your attention References: Numba, A Dynamic Python compiler for Science: http://lanyrd.com/2013/pycon/scdyzh
 Continuum Analytics: http://www.continuum.io ! Contact: [email protected]
 @josef_heinen" ! Thanks to: Florian Rhiem, Ingo Heimbach, Christian Felder, David Knodt, Jörg Winkler, Fabian Beule,
 Marcel Dück, Marvin Goblet, et al. 58