Vector search within knowledge graphs enables users to improve responses from their applications by combining the natural-language strength of an LLM and data accuracy of a graph. In this presentation, we will discuss what vector search is, what it looks like in a graph, how to add vectors to enhance the data, and how to use an LLM with graph vector search to harness relevant and contextual responses to questions.
Code repository: https://www.github.com/JMHReif/springai-goodreads