Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Congreso de Química CR24: Química, una solución...

Joaquin
November 24, 2024
3

Congreso de Química CR24: Química, una solución para cambios globales

Joaquin

November 24, 2024
Tweet

Transcript

  1. Zn(II), Zr(IV) ⇒ d0 MOF-5 Physical and chemical processes: Gas

    adsorption & separation, catalysis Electro-inactive porous materials
  2. Computational materials design in a nutshell Methodologies Density Functional Theory

    High-correlated methods Semiempirical methods Molecular Mechanics Big-data Science Properties Geometry Electronic structure REDOX and magnetism Excited states Charge and energy transport
  3. Hydrogen-bonded Organic Frameworks H4 TTFTB MUV-20a MUV-20b MUV-21 σ =

    6.07 × 10–7 S cm–1 σ = 1.35 × 10–6 S cm–1 σ = 6.23 × 10–9 S cm–1 Guillermo Mínguez (UV) María Vicent (UV)
  4. Hydrogen-bonded Organic Frameworks H4 TTFTB MUV-20a MUV-20b MUV-21 σ =

    6.07 × 10–7 S cm–1 σ = 1.35 × 10–6 S cm–1 σ = 6.23 × 10–9 S cm–1
  5. Hydrogen-bonded Organic Frameworks EPR MUV-20a MUV-21 MUV-20b The TTF has

    an unpaired e― HOFs are charge neutral There is no countercation non-radical
  6. Hydrogen-bonded Organic Frameworks EPR MUV-20a MUV-21 MUV-20b The TTF has

    an unpaired e― HOFs are charge neutral There is no countercation non-radical + ‒
  7. Hydrogen-bonded Organic Frameworks vacuum dielectric continuum SPIN DENSITY EPR MUV-20a

    MUV-21 MUV-20b The TTF has an unpaired e― HOFs are charge neutral There is no countercation non-radical + ‒
  8. Hydrogen-bonded Organic Frameworks vacuum dielectric continuum SPIN DENSITY EPR MUV-20a

    MUV-21 MUV-20b The TTF has an unpaired e― HOFs are charge neutral There is no countercation SPIN DENSITY accumulated charge non-radical + ‒
  9. Perylene-based MOFs Manel Souto (UA) Gonçalo Valente (UA) Perylene K+

    PTC 8.6 Å Per-MOF Mol. Syst. Des. Eng., 2022,7, 1065-1072 σ = 10‒8 S·cm‒1
  10. Perylene-based MOFs Manel Souto (UA) Gonçalo Valente (UA) σ =

    10‒8 S·cm‒1 Iodine doping Perylene K+ PTC 8.6 Å Per-MOF Mol. Syst. Des. Eng., 2022,7, 1065-1072 Distances in Å
  11. Per-MOF: ̅ 𝑱𝑱 = 11.78 meV [Per-MOF@I2 ]: ̅ 𝑱𝑱

    = 11.16 meV [Per-MOF@I3 ]: ̅ 𝑱𝑱 = 8.56 meV Perylene-based MOFs
  12. Per-MOF: ̅ 𝑱𝑱 = 11.78 meV [Per-MOF@I2 ]: ̅ 𝑱𝑱

    = 11.16 meV [Per-MOF@I3 ]: ̅ 𝑱𝑱 = 8.56 meV Perylene-based MOFs
  13. Per-MOF: ̅ 𝑱𝑱 = 11.78 meV [Per-MOF@I2 ]: ̅ 𝑱𝑱

    = 11.16 meV [Per-MOF@I3 ]: ̅ 𝑱𝑱 = 8.56 meV I3 Spin density Perylene-based MOFs
  14. Per-MOF: ̅ 𝑱𝑱 = 11.78 meV [Per-MOF@I2 ]: ̅ 𝑱𝑱

    = 11.16 meV [Per-MOF@I3 ]: ̅ 𝑱𝑱 = 8.56 meV I3 Spin density Perylene-based MOFs Per-MOF: σ = 10‒8 S·cm‒1 I2 -doped Per-MOF: σ = 10‒5 S·cm‒1
  15. Iron-based MOFs Chem. Sci., 2017, 8, 4450–4457 Mixed-valency Fe(II)/Fe(III) Fe2

    (BDT)3 J. Am. Chem. Soc. 2018, 140, 7411–7414 Fe(II) σ = 10–4 – 1.8 S/cm
  16. N N N NH N N N HN H2 BDT

    Iron-based MOFs BDT2– Fe(II) Fe2 (H0.67 BDT)3 (II) (2–) MOF-2 MOF-3 MOF-1
  17. Fe2 (BDT)3 Protonated 1.45 80.31 Γ to Z direction VB

    T to Z direction CB hole transport electron transport Deprotonated MOF-1 (Cmmm)
  18. Fe2 (BDT)3 Protonated 1.45 80.31 Γ to Z direction VB

    T to Z direction CB hole transport electron transport Deprotonated Charge transport pathways MOF-1 (Cmmm)
  19. Fe2 (BDT)3 1.45 80.31 Γ to Z direction VB CB

    hole transport electron transport Deprotonated Protonated directions MOF-2 (Fddd)
  20. Fe2 (BDT)3 1.45 80.31 Γ to Z direction VB CB

    hole transport electron transport Deprotonated Protonated directions Charge transport pathways MOF-2 (Fddd)
  21. Fe2 (BDT)3 1.45 80.31 VB CB hole transport electron transport

    Random distribution of protonated ligands MOF-3 (R-3m)
  22. Fe2 (BDT)3 1.45 80.31 VB CB hole transport electron transport

    Charge transport pathways Random distribution of protonated ligands h+ MOF-3 (R-3m)
  23. Conclusions  Cooperation between experiments and theoretical modelling allows boosting

    the development of electrically conducting porous materials.  Strategies to enhance conductivity in porous frameworks: o Zwitterion species in a π-stacked assembly o Electroactive guests (charge transfer and carrier formation) o Mixed-valence and appropriate protonation pattern
  24. Conclusions  Cooperation between experiments and theoretical modelling allows boosting

    the development of electrically conducting porous materials.  Strategies to enhance conductivity in porous frameworks: o Zwitterion species in a π-stacked assembly o Electroactive guests (charge transfer and carrier formation) o Mixed-valence and appropriate protonation pattern