Upgrade to Pro — share decks privately, control downloads, hide ads and more …

XVIII Simposio de Investigadores Jóvenes Químic...

Joaquin
November 24, 2024
6

XVIII Simposio de Investigadores Jóvenes Químicos RSEQ

Joaquin

November 24, 2024
Tweet

Transcript

  1. PREMIO JOVEN INVESTIGADOR – MODALIDAD POSTDOCTORAL > Dr. Joaquín Calbo

    Roig, Universidad de Valencia > Dr. Albert Cortijos Aragonès, IQTC-Universidad de Barcelona > Dr. Ignacio Funes Ardoiz, Universidad de La Rioja > Dra. Sara Rojas Macías, Universidad de Granada PREMIO JOVEN INVESTIGADOR – MODALIDAD LÍDER DE GRUPO > Dr. César de la Fuente Núñez, Universidad de Pensilvania > Dr. Max García Melchor, Trinity College Dublin > Dra. Beatriz Pelaz García, CiQUS-USC > Dr. Albert Rimola Gibert, Universidad Autónoma de Barcelona PREMIOS A LA EXCELENCIA INVESTIGADORA Dr. Carlos Martí Gastaldo, Universidad de Valencia RECONOCIMIENTO A UNA CARRERA DISTINGUIDA Dr. Francisco Lloret Pastor, Universidad de Valencia Premios RSEQ 2022
  2. Computational materials design in a nutshell Methodologies Density Functional Theory

    High-correlated methods Semiempirical methods Molecular Mechanics Big-data Science Properties Geometry Electronic structure REDOX and magnetism Excited states Charge and energy transport
  3. Tetrathiafulvalene (TTF) S S S S S S S S

    +e -e +e -e S S S S 0.37 eV 0.74 eV C2v boat conformation D2v planar D2 twisted 166º
  4. Tetrathiafulvalene (TTF) Electron donor molecule Facile oxidation π−π interactions Charge

    Transport Model Molecular Electronics Supramolecular Chemistry S S S S S S S S +e -e +e -e S S S S 0.37 eV 0.74 eV C2v boat conformation D2v planar D2 twisted 166º
  5. TTF "even in the soup" π-extended TTF J. Mol. Model.,

    2014, 20, 2188 Phys. Chem. Chem. Phys., 2014, 16, 4709–4719 exTTF truxTTF
  6. TTF "even in the soup" Angew. Chem. Int. Ed., 2014,

    53, 2170–2175 Chem. - A Eur. J., 2017, 23, 3666–3673 π-extended TTF J. Mol. Model., 2014, 20, 2188 Phys. Chem. Chem. Phys., 2014, 16, 4709–4719 exTTF truxTTF
  7. TTF-based porous materials inorganic organic MUV-2 = = high-spin Fe(III)

    TTFTB Guillermo Mínguez (UV) María Vicent (UV)
  8. TTF-based porous materials ∆E = 5 kcal mol–1 → 0º

    – 80º J. Am. Chem. Soc., 2018, 140, 10562–10569 Eox (MOF, exp) = 5.7 (PYR) – 6.8 (ACN) V TTFTB inorganic organic MUV-2
  9. TTF-based porous materials Beilstein J. Nanotechnol., 2019, 18, 1883 σ

    (MUV-2): 3.7·10−11 S cm–1 σ (MUV-2@C60 ): 4.7·10−9 S cm–1 ∆E = 5 kcal mol–1 → 0º – 80º J. Am. Chem. Soc., 2018, 140, 10562–10569 Eox (MOF, exp) = 5.7 (PYR) – 6.8 (ACN) V 600 nm TTFTB inorganic organic MUV-2@C60
  10. Hydrogen-bonded Organic Frameworks H4 TTFTB MUV-20a MUV-20b MUV-21 σ =

    6.07 × 10–7 S cm–1 σ = 1.35 × 10–6 S cm–1 σ = 6.23 × 10–9 S cm–1
  11. Hydrogen-bonded Organic Frameworks H4 TTFTB MUV-20a MUV-20b MUV-21 σ =

    6.07 × 10–7 S cm–1 σ = 1.35 × 10–6 S cm–1 σ = 6.23 × 10–9 S cm–1
  12. Hydrogen-bonded Organic Frameworks EPR MUV-20a MUV-21 MUV-20b The TTF has

    an unpaired e― HOFs are charge neutral There is no countercation non-radical
  13. Hydrogen-bonded Organic Frameworks EPR MUV-20a MUV-21 MUV-20b The TTF has

    an unpaired e― HOFs are charge neutral There is no countercation non-radical + ‒
  14. Hydrogen-bonded Organic Frameworks vacuum dielectric continuum SPIN DENSITY EPR MUV-20a

    MUV-21 MUV-20b The TTF has an unpaired e― HOFs are charge neutral There is no countercation non-radical + ‒
  15. Hydrogen-bonded Organic Frameworks vacuum dielectric continuum SPIN DENSITY EPR MUV-20a

    MUV-21 MUV-20b The TTF has an unpaired e― HOFs are charge neutral There is no countercation SPIN DENSITY accumulated charge non-radical + ‒
  16. Perylene-based MOFs Manel Souto (UA) Gonçalo Valente (UA) Perylene K+

    PTC 8.6 Å Per-MOF Mol. Syst. Des. Eng., 2022,7, 1065-1072 σ = 10‒8 S·cm‒1
  17. Perylene-based MOFs Manel Souto (UA) Gonçalo Valente (UA) σ =

    10‒8 S·cm‒1 Iodine doping Perylene K+ PTC 8.6 Å Per-MOF Mol. Syst. Des. Eng., 2022,7, 1065-1072 Distances in Å
  18. Per-MOF: ̅ 𝑱𝑱 = 11.78 meV [Per-MOF@I2 ]: ̅ 𝑱𝑱

    = 11.16 meV [Per-MOF@I3 ]: ̅ 𝑱𝑱 = 8.56 meV Perylene-based MOFs
  19. Per-MOF: ̅ 𝑱𝑱 = 11.78 meV [Per-MOF@I2 ]: ̅ 𝑱𝑱

    = 11.16 meV [Per-MOF@I3 ]: ̅ 𝑱𝑱 = 8.56 meV Perylene-based MOFs
  20. Per-MOF: ̅ 𝑱𝑱 = 11.78 meV [Per-MOF@I2 ]: ̅ 𝑱𝑱

    = 11.16 meV [Per-MOF@I3 ]: ̅ 𝑱𝑱 = 8.56 meV I3 Spin density Perylene-based MOFs
  21. Per-MOF: ̅ 𝑱𝑱 = 11.78 meV [Per-MOF@I2 ]: ̅ 𝑱𝑱

    = 11.16 meV [Per-MOF@I3 ]: ̅ 𝑱𝑱 = 8.56 meV I3 Spin density Perylene-based MOFs Per-MOF: σ = 10‒8 S·cm‒1 I2 -doped Per-MOF: σ = 10‒5 S·cm‒1
  22. Iron-based MOFs Chem. Sci., 2017, 8, 4450–4457 Mixed-valency Fe(II)/Fe(III) Fe2

    (BDT)3 J. Am. Chem. Soc. 2018, 140, 7411–7414 Fe(II)
  23. Iron-based MOFs Chem. Sci., 2017, 8, 4450–4457 Mixed-valency Fe(II)/Fe(III) Fe2

    (BDT)3 J. Am. Chem. Soc. 2018, 140, 7411–7414 N N N NH N N N HN BDT Fe(II)
  24. Fe2 (BDT)3 Protonated 1.45 80.31 Γ to Z direction VB

    T to Z direction CB hole transport electron transport Deprotonated Polymorph-1 (Cmmm)
  25. Fe2 (BDT)3 Protonated 1.45 80.31 Γ to Z direction VB

    T to Z direction CB hole transport electron transport Deprotonated Charge transport pathways Polymorph-1 (Cmmm)
  26. Fe2 (BDT)3 1.45 80.31 Γ to Z direction VB CB

    hole transport electron transport Deprotonated Protonated directions Polymorph-3 (Fddd)
  27. Fe2 (BDT)3 1.45 80.31 Γ to Z direction VB CB

    hole transport electron transport Deprotonated Protonated directions Charge transport pathways Polymorph-3 (Fddd)
  28. Fe2 (BDT)3 Polymorph-3 (R-3m) 1.45 80.31 VB CB hole transport

    electron transport Random distribution of protonated ligands
  29. Fe2 (BDT)3 Polymorph-3 (R-3m) 1.45 80.31 VB CB hole transport

    electron transport Charge transport pathways Random distribution of protonated ligands h+
  30. Conclusions  Cooperation between experiments and theoretical modelling allows boosting

    the development of electrically conducting porous materials.  TTF is an interesting and versatile moiety for designing electroactive materials.  Strategies to enhance conductivity in porous frameworks: o Zwitterion species in a π-stacked assembly o Electroactive guests (charge transfer and carrier formation) o Mixed-valence and appropriate protonation pattern
  31.  Cooperation between experiments and theoretical modelling allows boosting the

    development of electrically conducting porous materials.  TTF is an interesting and versatile moiety for designing electroactive materials.  Strategies to enhance conductivity in porous frameworks: o Zwitterion species in a π-stacked assembly o Electroactive guests (charge transfer and carrier formation) o Mixed-valence and appropriate protonation pattern Conclusions
  32.  Cooperation between experiments and theoretical modelling allows boosting the

    development of electrically conducting porous materials.  TTF is an interesting and versatile moiety for designing electroactive materials.  Strategies to enhance conductivity in porous frameworks: o Zwitterion species in a π-stacked assembly o Electroactive guests (charge transfer and carrier formation) o Mixed-valence and appropriate protonation pattern Conclusions