Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Future directions for metal-organic framework r...
Search
Joaquin
November 24, 2024
0
6
Future directions for metal-organic framework research
Joaquin
November 24, 2024
Tweet
Share
More Decks by Joaquin
See All by Joaquin
VII Colloquium on Computational Simulations in Sciences
joaquincalbo
0
16
Congreso de Química CR24: Química, una solución para cambios globales
joaquincalbo
0
5
Faraday Discussions: Challenges and prospects in organic photonics and electronics
joaquincalbo
0
4
XVIII Simposio de Investigadores Jóvenes Químicos RSEQ
joaquincalbo
0
11
YIS-MOF-2022
joaquincalbo
0
4
YRCHEM-2022
joaquincalbo
0
6
X Young Scientists TCCM
joaquincalbo
0
5
Featured
See All Featured
Build The Right Thing And Hit Your Dates
maggiecrowley
34
2.5k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.7k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.5k
Writing Fast Ruby
sferik
628
61k
A Philosophy of Restraint
colly
203
16k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Rebuilding a faster, lazier Slack
samanthasiow
80
8.9k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
46
2.4k
The World Runs on Bad Software
bkeepers
PRO
67
11k
How GitHub (no longer) Works
holman
314
140k
Designing on Purpose - Digital PM Summit 2013
jponch
117
7.1k
Transcript
Boosting the discovery of next-generation porous materials through computation Joaquín
Calbo – University of Valencia (SPAIN) UoB-UL-ICMol Mini-symposium on MOFs
Who and where we are Molecular Materials Theoretical Chemistry Group
Valencia - SPAIN Angelo Giussani Juan Aragó Enrique Ortí
None
tiger nut pastry
1. Covalent D-A architectures 2. Supramolecular D-A complexes 3. Supramolecular
polymers Complexity S S R R CN CN NC CN Where do I come from (scientifically)
Where do I come from (scientifically) Electroactive porous frameworks Perovskite-like
materials for OE Prof. Aron Walsh
Guillermo Mínguez (UV) Mónica Giménez (UV) Aron Walsh (ICL) Loredana
Protesescu (UG) Manel Souto (USC) Science is cooperation
Computational materials design in a nutshell Methodologies Density Functional Theory
High-correlated methods Semiempirical methods Molecular Mechanics Big-data Science Properties Crystal structure: geometry & stability Electronic structure: REDOX, magnetism, excited states, charge & energy transport
Tetrathiafulvalene (TTF) Electron donor molecule Facile oxidation π−π interactions Charge
Transport Model Molecular Electronics Supramolecular Chemistry 166º
TTF-based MUV-2 a b TTFTB SBU a b c 33
Å 12 Å Fe(III) Micro/meso-porosity 2 H2 O and 1 OH– OH–
∆E = 5 kcal mol–1 → 0º – 80º Eox
(MOF, exp) = 5.7 (PYR) – 6.8 (ACN) V J. Am. Chem. Soc., 2018, 140, 10562–10569. Energy penalty for bending
Encapsulation of C60 in MUV-2
(Stability) Conformational Analysis NCI interactions −20.01 kcal/mol −23.74 kcal/mol
Density of States & Crystal Orbitals Density of states Frontier
crystal orbital topologies
Theoretical absorption spectra CT excitation Time-dependent DFT
Hydrogen-bonded Organic Frameworks H4 TTFTB MUV-20a MUV-20b MUV-21 σ =
6.07 × 10–7 S cm–1 σ = 1.35 × 10–6 S cm–1 σ = 6.23 × 10–9 S cm–1 PBEsol // HSE06 | FO-DFT
Hydrogen-bonded Organic Frameworks vacuum dielectric continuum SPIN DENSITY EPR MUV-20a
MUV-21 MUV-20b The TTF has an unpaired e― HOFs are charge neutral There is no countercation SPIN DENSITY accumulated charge non-radical + ‒ J. Am. Chem. Soc. 2022, 144, 9074−9082
Perylene-based MOFs σ = 10‒8 S·cm‒1 Iodine doping Perylene K+
PTC 8.6 Å Per-MOF Distances in Å I2 "I3 "
Per-MOF: ̅ 𝑱𝑱 = 11.78 meV [Per-MOF@I2 ]: ̅ 𝑱𝑱
= 11.16 meV [Per-MOF@I3 ]: ̅ 𝑱𝑱 = 8.56 meV Perylene-based MOFs I2 -doped Per-MOF: σ = 10‒5 S·cm‒1 TD-HSE06/def2-SVP Per-MOF: σ = 10‒8 S·cm‒1 Mol. Syst. Des. Eng., 2022, 7, 1065-1072 Electronic coupling between dimers Spin density CT
Perylene-based MOFs σRT ~10-10 S/cm (pressed pellets) < 1m0 No
relevant porosity Poor experimental conductivity
Perylene-based MOFs Absorption and emission properties No relevant porosity
Perylene-based MOFs ‒30 meV +70 meV +60 meV 559 nm
673 nm 663 nm excitonic coupling TD-DFT/PBE0/6-31G(d,p) Lowest-lying singlet excited state Inorg. Chem., 2023, 62, 7834-7842
Iron-based MOFs Chem. Sci., 2017, 8, 4450–4457 Mixed-valency Fe(II)/Fe(III) Fe2
(BDT)3 J. Am. Chem. Soc. 2018, 140, 7411–7414 Fe(II) σ = 10–4 – 1.8 S/cm
N N N NH N N N HN H2 BDT
Iron-based MOFs BDT2– Fe(II) Fe2 (H0.67 BDT)3 (II) (2–) P2 P3 P1
Fe2 (BDT)3 Protonated 1.45 80.31 Γ to Z direction VBM
T to Z direction CBM hole transport electron transport Deprotonated Charge transport pathways (Cmmm) P1 Band structure
Fe2 (BDT)3 1.45 80.31 Γ to Z direction VBM CBM
hole transport electron transport Deprotonated Partially protonated directions Charge transport pathways (Fddd) P2 Band structure
Fe2 (BDT)3 1.45 80.31 VBM CBM hole transport electron transport
Charge transport pathways Random distribution of protonated ligands h+ (R-3m) P3 Band structure
Fe2 (BDT)3 half-protonated protonated Random protonation P3 P2 P1 deprotonated
deprotonated
MIL-101 (Cr d3) Nanoparticle (perovskite) Tune absorption/emission Interfacial structure &
electronic properties Phase stability & transition in ZIFs ZIF-8 (Zn, Co, Fe) + eim / mbim Chem. Sci., 2021, 12, 6129-6135 Chem. Sci., 2022, 13, 842-847
MIL-100(Fe) with carvacrol ΔE = −11.23 kcal/mol (carvacrol by water)
Spin density (radical formation) Carvacrol-MOF interaction ACS Appl. Mater. & Interfaces, 2022, 14, 10758-10768 Carvacrol liberation Antimicrobial activity MIL-100 (FeIII) NPs Carvacrol encapsulation Without H With H
We carry out theoretical studies by performing calculations at the
appropriate level of theory for: Crystal elucidation and structural stability Understanding electronic structure and redox properties Excited state phenomena Strategies to enhance conductivity in porous frameworks: mixed- valence, electroactive guests and/or redox-active ligands Overview
Acknowledgements UoB-UL-ICMol Symposium Collaborators: The team: PID2020-119748GA-I00 funded by MCIN/AEI/10.13039/501100011033