Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Future directions for metal-organic framework r...

Joaquin
November 24, 2024
4

Future directions for metal-organic framework research

Joaquin

November 24, 2024
Tweet

Transcript

  1. Boosting the discovery of next-generation porous materials through computation Joaquín

    Calbo – University of Valencia (SPAIN) UoB-UL-ICMol Mini-symposium on MOFs
  2. Who and where we are Molecular Materials Theoretical Chemistry Group

    Valencia - SPAIN Angelo Giussani Juan Aragó Enrique Ortí
  3. 1. Covalent D-A architectures 2. Supramolecular D-A complexes 3. Supramolecular

    polymers Complexity S S R R CN CN NC CN Where do I come from (scientifically)
  4. Guillermo Mínguez (UV) Mónica Giménez (UV) Aron Walsh (ICL) Loredana

    Protesescu (UG) Manel Souto (USC) Science is cooperation
  5. Computational materials design in a nutshell Methodologies Density Functional Theory

    High-correlated methods Semiempirical methods Molecular Mechanics Big-data Science Properties Crystal structure: geometry & stability Electronic structure: REDOX, magnetism, excited states, charge & energy transport
  6. Tetrathiafulvalene (TTF) Electron donor molecule Facile oxidation π−π interactions Charge

    Transport Model Molecular Electronics Supramolecular Chemistry 166º
  7. TTF-based MUV-2 a b TTFTB SBU a b c 33

    Å 12 Å Fe(III) Micro/meso-porosity 2 H2 O and 1 OH– OH–
  8. ∆E = 5 kcal mol–1 → 0º – 80º Eox

    (MOF, exp) = 5.7 (PYR) – 6.8 (ACN) V J. Am. Chem. Soc., 2018, 140, 10562–10569. Energy penalty for bending
  9. Hydrogen-bonded Organic Frameworks H4 TTFTB MUV-20a MUV-20b MUV-21 σ =

    6.07 × 10–7 S cm–1 σ = 1.35 × 10–6 S cm–1 σ = 6.23 × 10–9 S cm–1 PBEsol // HSE06 | FO-DFT
  10. Hydrogen-bonded Organic Frameworks vacuum dielectric continuum SPIN DENSITY EPR MUV-20a

    MUV-21 MUV-20b The TTF has an unpaired e― HOFs are charge neutral There is no countercation SPIN DENSITY accumulated charge non-radical + ‒ J. Am. Chem. Soc. 2022, 144, 9074−9082
  11. Perylene-based MOFs σ = 10‒8 S·cm‒1 Iodine doping Perylene K+

    PTC 8.6 Å Per-MOF Distances in Å I2 "I3 "
  12. Per-MOF: ̅ 𝑱𝑱 = 11.78 meV [Per-MOF@I2 ]: ̅ 𝑱𝑱

    = 11.16 meV [Per-MOF@I3 ]: ̅ 𝑱𝑱 = 8.56 meV Perylene-based MOFs I2 -doped Per-MOF: σ = 10‒5 S·cm‒1 TD-HSE06/def2-SVP Per-MOF: σ = 10‒8 S·cm‒1 Mol. Syst. Des. Eng., 2022, 7, 1065-1072 Electronic coupling between dimers Spin density CT
  13. Perylene-based MOFs σRT ~10-10 S/cm (pressed pellets) < 1m0 No

    relevant porosity Poor experimental conductivity
  14. Perylene-based MOFs ‒30 meV +70 meV +60 meV 559 nm

    673 nm 663 nm excitonic coupling TD-DFT/PBE0/6-31G(d,p) Lowest-lying singlet excited state Inorg. Chem., 2023, 62, 7834-7842
  15. Iron-based MOFs Chem. Sci., 2017, 8, 4450–4457 Mixed-valency Fe(II)/Fe(III) Fe2

    (BDT)3 J. Am. Chem. Soc. 2018, 140, 7411–7414 Fe(II) σ = 10–4 – 1.8 S/cm
  16. N N N NH N N N HN H2 BDT

    Iron-based MOFs BDT2– Fe(II) Fe2 (H0.67 BDT)3 (II) (2–) P2 P3 P1
  17. Fe2 (BDT)3 Protonated 1.45 80.31 Γ to Z direction VBM

    T to Z direction CBM hole transport electron transport Deprotonated Charge transport pathways (Cmmm) P1 Band structure
  18. Fe2 (BDT)3 1.45 80.31 Γ to Z direction VBM CBM

    hole transport electron transport Deprotonated Partially protonated directions Charge transport pathways (Fddd) P2 Band structure
  19. Fe2 (BDT)3 1.45 80.31 VBM CBM hole transport electron transport

    Charge transport pathways Random distribution of protonated ligands h+ (R-3m) P3 Band structure
  20. MIL-101 (Cr d3) Nanoparticle (perovskite) Tune absorption/emission Interfacial structure &

    electronic properties Phase stability & transition in ZIFs ZIF-8 (Zn, Co, Fe) + eim / mbim Chem. Sci., 2021, 12, 6129-6135 Chem. Sci., 2022, 13, 842-847
  21. MIL-100(Fe) with carvacrol ΔE = −11.23 kcal/mol (carvacrol by water)

    Spin density (radical formation) Carvacrol-MOF interaction ACS Appl. Mater. & Interfaces, 2022, 14, 10758-10768 Carvacrol liberation Antimicrobial activity MIL-100 (FeIII) NPs Carvacrol encapsulation Without H With H
  22. We carry out theoretical studies by performing calculations at the

    appropriate level of theory for:  Crystal elucidation and structural stability  Understanding electronic structure and redox properties  Excited state phenomena  Strategies to enhance conductivity in porous frameworks: mixed- valence, electroactive guests and/or redox-active ligands Overview