Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AIレビュー導入によるCIツールとの共存と最適化
Search
Masaya Nakashima / 中島 暢哉
March 06, 2025
Programming
1
2.3k
AIレビュー導入によるCIツールとの共存と最適化
2025/3/6 コードレビューどうしてる? 品質向上と効率化の現場Tips共有会 登壇資料
https://findy.connpass.com/event/345102/
Masaya Nakashima / 中島 暢哉
March 06, 2025
Tweet
Share
Other Decks in Programming
See All in Programming
実は歴史的なアップデートだと思う AWS Interconnect - multicloud
maroon1st
0
310
.NET Conf 2025 の興味のあるセッ ションを復習した / dotnet conf 2025 quick recap for backend engineer
tomohisa
0
110
はじめてのカスタムエージェント【GitHub Copilot Agent Mode編】
satoshi256kbyte
0
160
ELYZA_Findy AI Engineering Summit登壇資料_AIコーディング時代に「ちゃんと」やること_toB LLMプロダクト開発舞台裏_20251216
elyza
2
1k
Giselleで作るAI QAアシスタント 〜 Pull Requestレビューに継続的QAを
codenote
0
340
AtCoder Conference 2025
shindannin
0
930
The Art of Re-Architecture - Droidcon India 2025
siddroid
0
160
2年のAppleウォレットパス開発の振り返り
muno92
PRO
0
180
クラウドに依存しないS3を使った開発術
simesaba80
0
220
[AtCoder Conference 2025] LLMを使った業務AHCの上⼿な解き⽅
terryu16
6
1k
AI時代を生き抜く 新卒エンジニアの生きる道
coconala_engineer
1
520
脳の「省エネモード」をデバッグする ~System 1(直感)と System 2(論理)の切り替え~
panda728
PRO
0
130
Featured
See All Featured
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
38
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
3
2.8k
Navigating Weather and Climate Data
rabernat
0
68
Applied NLP in the Age of Generative AI
inesmontani
PRO
4
2k
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
600
Measuring & Analyzing Core Web Vitals
bluesmoon
9
730
Accessibility Awareness
sabderemane
0
35
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Facilitating Awesome Meetings
lara
57
6.7k
Rails Girls Zürich Keynote
gr2m
95
14k
Bash Introduction
62gerente
615
210k
Transcript
AIレビュー導入によるCIツールとの共存と最適化 中島 暢哉 2025年3月6日 1
自己紹介 中島 暢哉 合同会社 DMM.com プラットフォーム開発本部 第1開発部 アカウントサービスグループ 会員バックエンドチーム チーム記事
• AWS Database Migration Service (DMS) – MySQLでの活用Tips集 • DMM会員基盤 オンプレミスMySQLからAmazon Aurora MySQLへの移行方法とハマった点 • Pull Request のレビュー効率をあげるためにやっておきたいこと 2
None
会員バックエンドチーム・開発環境 チーム規模 • リーダー1名含めた開発者7名体制 開発環境 • 言語:Go • インフラ環境:AWS •
CI:GitHub Actions ◦ Lint ◦ Testなど • CD:ArgoCD • Docker / Kubernetes 4
コードレビューの課題 • レビューの質に一貫性がない ◦ 人員異動が発生したときに備えて最低限の質を担保したい(属人化の回避) • 変更内容のドキュメント作成が負担になる ◦ 人によって内容の粒度が違う •
Pull Requestが大きいと認知負荷が高い ◦ 分割にも限界がある ◦ 単純なミスの指摘漏れが発生しやすい ◦ 結果としてリードタイムが長くなる → AIレビューの導入を検討 5
AIレビュー(PR-Agent)導入の目的 目的:レビューコストの削減とコード品質の向上 ✅ 初回レビューの自動化 • タイプミスやエラーの見落としを未然に防ぐ • Pull Requestのタイトルや説明を整理し、レビュアーの理解を促進 ✅
人間のレビューを高度化 • AIが初歩的なミスを指摘 → 人間はアーキテクチャや設計に集中できる • レビューの速度と品質を向上させ、全体の効率を改善 AIレビューの導入によりレビュー負担を軽減しつつ、 コード品質を担保することを目指しました。 6
PR-Agentの概要 PR-Agentは、Codium AIにより、オープンソースで開発されている AIツール 裏側では、GPT-3.5やGPT-4を使い、GitHubのPull Requestに対して行える、 以下の機能を提供しています。 • Pull Requestで変更されたコードの、分析・要約・レビューを行う
• Pull Requestのタイトルと説明を変更する • Pull Requestで変更されたコードの改善提案を行う など また、PR-Agentからは、GitHub ActionsのWorkflowを使って導入するためのActionsが提供されている ため、Azure OpenAI API Keyさえあれば導入は簡単にできます。 https://github.com/qodo-ai/pr-agent 7
PR-Agentの導入例 describe機能 8
PR-Agentの導入例 improve機能 9
PR-Agent導入後の気づき メリット • よくあるミス・言語仕様の理解度が高い ◦ 見逃しがちなTypoやデバック用のコードに対する指摘 ◦ 言語仕様的なミスに対する検出精度 • Pull
Requestの説明を整理・要約 ◦ レビューポイントをまとめてくれる デメリット • ドメイン知識が弱い ◦ プロジェクト固有の仕様や業務ルールを深く理解できない • ベストプラクティスの適用判断が難しい ◦ あえて実施していないケース(タイミングの関係等で採用できない)を適切に判断できない 10
コードレビューの課題 • ❌レビューの質に一貫性がない ◦ 人員異動が発生したときに備えて最低限の質を担保したい(属人化の回避) • ✅変更内容のドキュメント作成が負担になる ◦ 人によって内容の粒度が違う •
△Pull Requestが大きいと認知負荷が高い ◦ 分割にも限界がある ◦ 単純なミスの指摘漏れが発生しやすい ◦ 結果としてリードタイムが長くなる 11
既存のCIツール(Lint, Test…)とは何がちがうのか 12
AIレビューとCIツール 役割の違い 13 比較項目 AIレビュー(PR-Agent等) CIツール(Lint, Test等) 目的 PRの可読性向上、ミスの指摘 コード品質のチェック、規約の強制
チェック内容 タイプミスやロジックの改善提案、 PRの説明補助 Linter、型チェック、テスト実行 対応レベル 推奨(人が判断する) 強制(機械的にFail/Pass)
AIレビューとCIツールの棲み分け ✅ AIレビュー(PR-Agentなど) • Pull Requestの説明を整理し、レビュアーの負担を軽減 • 「ルールでは防げないが、人が見落としやすい部分を指摘」 ◦ 例:「この変数名は曖昧では?」
◦ 例:「この処理は簡潔に書けるのでは?」 • 人が最終的には判断を行う(人間のレビューはなくならない) ✅ CIツール(Lint, Testなど) • コーディング規約やフォーマットの自動チェック • 「ルールで決められたチェック」を自動で適用 ◦ 例: 「インデントがずれているので Fail」 • 機械的にFail/Passを決める部分を担当 14
まとめ ✅ AIレビュー • 標準的な指摘はできるもののドメインを理解して深い指摘ができてない • 最終的には人の判断が必要になる ✅ AIレビューとCIツールの棲み分け •
CIツール ◦ 機械的にFail/Passを決める部分を担当 • AIレビュー ◦ AIレビューは人間のレビューを補助し、より高度な議論を可能にする 15
AIレビュー導入によるCIツールとの共存と最適化 中島 暢哉 2025年3月6日 16