$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Pythonistaに憧れた分析屋の奮闘記
Search
kanan
June 09, 2017
Programming
0
1.3k
Pythonistaに憧れた分析屋の奮闘記
kanan
June 09, 2017
Tweet
Share
More Decks by kanan
See All by kanan
Pythonデータ分析コトハジメin静岡
kanan
0
26
Python超入門データ分析編-PyLadiesCaravan広島2nd-
kanan
0
100
PyLadiesCaravan_in_苫小牧
kanan
0
120
Python超入門_データ分析編in青森
kanan
0
190
Pythonデータ分析コトハジメin愛知3rd
kanan
1
150
PyLadiesCaravan in 大阪
kanan
0
290
PyLadiesCaravan in 名古屋Returns
kanan
0
190
PyLadiesCaravan in 愛媛(Python入門データ分析編)
kanan
0
340
Python入門_PyLadiesTokyo2021/08/29
kanan
0
400
Other Decks in Programming
See All in Programming
React Native New Architecture 移行実践報告
taminif
1
150
【CA.ai #3】Google ADKを活用したAI Agent開発と運用知見
harappa80
0
300
Go コードベースの構成と AI コンテキスト定義
andpad
0
120
WebRTC、 綺麗に見るか滑らかに見るか
sublimer
1
160
【Streamlit x Snowflake】データ基盤からアプリ開発・AI活用まで、すべてをSnowflake内で実現
ayumu_yamaguchi
1
120
AIの誤りが許されない業務システムにおいて“信頼されるAI” を目指す / building-trusted-ai-systems
yuya4
6
2.6k
Integrating WordPress and Symfony
alexandresalome
0
150
俺流レスポンシブコーディング 2025
tak_dcxi
14
8.5k
堅牢なフロントエンドテスト基盤を構築するために行った取り組み
shogo4131
8
2.3k
Microservices Platforms: When Team Topologies Meets Microservices Patterns
cer
PRO
1
1k
FluorTracer / RayTracingCamp11
kugimasa
0
220
AIエンジニアリングのご紹介 / Introduction to AI Engineering
rkaga
5
2k
Featured
See All Featured
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
How GitHub (no longer) Works
holman
316
140k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
The Cult of Friendly URLs
andyhume
79
6.7k
Facilitating Awesome Meetings
lara
57
6.7k
Context Engineering - Making Every Token Count
addyosmani
9
500
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
GitHub's CSS Performance
jonrohan
1032
470k
Visualization
eitanlees
150
16k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
How STYLIGHT went responsive
nonsquared
100
6k
Transcript
PythonistaʹಌΕͨੳͷฃಆه @kanan* 2017.06.07 ΈΜͳͷPythonษڧձ#25
ࣗݾհ ˎKANANʢ͔ͳΜʣ ɹɹcompass-ID @kanan* ɹɹTwitter-ID @Addition_quince ˎ͓ࣄ ɹɹSIerاۀͰσʔλαΠΤϯεؔ࿈ۀΛͬͯ·͢ ɹɹݴޠSAS ˎPyLadiesʹ2016.ळ͔Βͪΐͪ͜ΐ͜ࢀՃ
ˎझຯԅɻ͓ञ͕େ͖ɻ
ࠓͷ͓ͳ͠ ˎϓϩάϥϛϯάʹڵຯ͕ͳ͔ͬͨੳ͕ ˎεΩϧΞοϓͨͯ͘͠PythonʹखΛग़ͦ͏ͱܾҙ͠ ˎ৺ંΕͳ͕Βฃಆͨ͠10ϲ݄ؒͷ͓Ͱ͢ PythonistaʹಌΕͨੳͷฃಆه Pythonista Lv0 → Lv1.5 ※͖ͬͱੌ͍ਓLv
20͘Β͍
Pythonͱͷग़ձ͍ σʔλੳܥɹˠɹPython Α͋͘Δͭ
͜Ε·Ͱͷϓϩάϥϛϯάྺ 2013 2014 2015 2016 2012 2011 େֶ γεςϜΤϯδχΞ σʔλαΠΤϯςΟετ
ˎੲϓϩάϥϛϯάͯͨͭ͠Γͩͬͨ ˎࣄͰϚωδϝϯτ͕ଟ͘ͳΓɺ৮Βͳ͍ۭനͷظؒ ˎSASݴޠͱ͍͍ͳ͕ΒπʔϧͬΆ͍ ϓϩάϥϛϯάɹʹɹࣄ
͜Ε·Ͱͷϓϩάϥϛϯάྺ ͪΌΜͱϓϩάϥϛϯάͬͯͳ͍
PythonσϏϡʔΛܾҙ PyLevel 0 20169݄ ˎҟ༷ͳ΄ͲͷΔؾ ˎΔੳͷࣝ
ͦͷ̍िؒޙɾɾɾ PyLevel 0 20169݄ ͦͷ̎ ˎΠϯετʔϧํ๏ݕࡧ͢Δͱ ɹɹΓํ͕ຯʹҧ͏ ˎHomebrewʁpyenvʁφχιϨ ˎPython3ΛೖΕͨͷʹ ɹɹόʔδϣϯ͕Python2ͬͯͳΔ
ˎ.bash_plofileͳ͍͠ʂ ˎPython͡ΊΔͨΊʹങͬͨ ɹɹMACͷ͍ํ͕Θ͔Βͳ͍ Πϯετʔϧ Ͱ͖ͳ͍ʂ
ܸɹ
ͦΜͳ࣌ɺPyLadiesTokyoͱग़ձ͏
PyLadies TokyoͰSTEP UP PyLadies Tokyo ळ߹॓ 2016 [2016.10.8-10] PyLadies Tokyo
Meet Up #16 [2016.11.27] PyLadies Tokyo Meet Up #17 [2016.12.11] PyLadies Tokyo Meet Up #20 [2016.03.25] *ڥߏங,AnacondaͱJupyterNotebookͷ͍ํΛֶͿ *ڝٕϓϩάϥϛϯάͰPythonͷॻ͖ํΛֶͿ *ϚΠίϯϘʔυ(STM32 Discovery)ʹMicro PythonͰLνΧ *WebεΫϨΠϐϯάΛͬͯΈΔ
ݸਓతʹσʔλੳपลͰษڧ ˎσʔλੳܥ ɹɹɹ1) titanicੜଘऀ༧ଌ ɹɹɹ2) ΞϝϦΧͷՈͷച٫Ձ֨༧ଌ ɹɹɹ3) ίϯϏχͷച্͛༧ଌ ˎͦͷଞ ɹɹɹ1)
खॻ͖ࣈͷೝࣝ ɹɹɹ2) RaspberryPi3ͰPythonͬͯΈΔ 2017.3 ʙ2017.4
PyLevel 1.0 20174݄ ˎΞϧΰϦζϜָ͍͠ ˎԿ͔Ͱ͖Δͱخ͍͠ ˎExcelSASͰ ɹͬͯͨࣄ͕PythonͰ ˎͬͱ৭ʑͬͯΈ͍ͨ Δؾ෮׆ɻͬͱೖऀϨϕϧʹ
νϟϨϯδ ͕ࣗڵຯ͕͋ΔςʔϚͰ Γ͍ͨͱࢥͬͨͷΛΖ͏
ΟεΩʔͰػցֶशʹઓ ʲͳΜͰΟεΩʔʁʳ ɹˎͱΓ͋͑ͣࢲ͕͖ ɹˎϫΠϯΈ͍ͨʹฑ͕Ռͯ͠ͳ͘ଟ͍Θ͚͡Όͳ͍ ɹˎւ֎ͷϏʔϧΈ͍ͨʹຯ߳Γͷಛ͕͖ͬΓͯ͠Δ Ϙτϧͷϥϕϧ͔ΒฑΛผ ը૾ೝࣝ WEBͷใ͔Β֤ฑͷಛΛநग़ ςΩετղੳ ͖ͳฑ͔ΒͨͿΜ͓ޱʹ߹͏ͷΛਪન
Ϩίϝϯυ
Anaconda Continuum Analyticsࣾఏڙͷ σʔλੳͰΑ͘ར༻͞ΕΔϥΠϒϥϦ܊Λ ҰׅΠϯετʔϧͰ͖ͪΌ͏ύοέʔδ ΟεΩʔͰػցֶशʹઓ Jupyter Notebook ϒϥβͰಈ࡞͢Δରܕ࣮ߦڥ ίʔυهड़ͱ࣮ߦɺίϝϯτૠೖ͕Ͱ͖ɺ
݁Ռͷอଘڞ༗ʹศར AnacondaೖΕΔͱσϑΥϧτͰೖͬͯΔ ɹPythonҎ֎ʹR, node.js, RubyෳݴޠʹରԠ ʲ࣮ߦڥʳ
ΟεΩʔͰػցֶशʹઓ Ϙτϧͷϥϕϧ͔ΒฑΛผ ը૾ೝࣝ ̍ʣҰੜݒ໋σʔλΛूΊΔ ̎ʣskimageΛͬͯHOGಛྔΛऔಘ͢Δ ̏ʣֶशσʔλͱςετσʔλʹׂ ̐ʣsklearnΛͬͯCodeBookΛ࡞͠BoVWʹม ̑ʣֶशͱςετ ▪༻ͨ͠ϥΠϒϥϦ ɹɹskimage,
matplotlib, sklearn, glob, os
ΟεΩʔͰػցֶशʹઓ Ϙτϧͷϥϕϧ͔ΒฑΛผ ը૾ೝࣝ ̍ʣҰੜݒ໋σʔλΛूΊΔ 899ຕ ࣗͷ͖ͳ11ฑ͚ͩͰ৺ંΕͯఘΊΔ
ΟεΩʔͰػցֶशʹઓ Ϙτϧͷϥϕϧ͔ΒฑΛผ ը૾ೝࣝ ̎ʣskimageΛͬͯHOGಛྔΛऔಘ͢Δ HOG(Histograms of Oriented Gradients) ɹہॴྖҬ (ηϧ)
ͷًͷޯํΛώετάϥϜԽ 1.ը૾ΛదͳαΠζʹϦαΠζ͠ɺάϨΠεέʔϧͰಡΈࠐΉ 2.֤pixelͷً͔ΒޯڧͱޯํΛٻΊΔ 3.ηϧྖҬ͝ͱʹώετάϥϜΛٻΊΔʢࠓճ8×8ϐΫηϧʣ 4.ϒϩοΫ͝ͱʹਖ਼نԽ͠ɺಛྔΛநग़͢Δʢࠓճ3×3ηϧʣ
ΟεΩʔͰػցֶशʹઓ Ϙτϧͷϥϕϧ͔ΒฑΛผ ը૾ೝࣝ ̎ʣskimageΛͬͯHOGಛྔΛऔಘ͢Δ
ΟεΩʔͰػցֶशʹઓ Ϙτϧͷϥϕϧ͔ΒฑΛผ ը૾ೝࣝ ̐ʣsklearnΛͬͯCodeBookΛ࡞͠BoVWʹม BoVW(Bag-of-Visual-Words)ܗࣜ ɹը૾ͷಛྔΛϕΫτϧԽ͠ώετάϥϜʹͨ͠ͷ ɾɾɾɾ ɾɾɾ ɾɾɾ Visual-word
vectors Codebook (දύλʔϯͷϦετʣ ç ç ç ç
ΟεΩʔͰػցֶशʹઓ Ϙτϧͷϥϕϧ͔ΒฑΛผ ը૾ೝࣝ ̑ʣֶशͱςετ ը૾σʔλͱਖ਼ղͷϥϕϧΛֶशͤ͞Δɹ※SVMʢαϙʔτϕΫλϚγϯʣΛ࠾༻ άϦουαʔνͰϋΠύʔύϥϝʔλνϡʔχϯά
ΟεΩʔͰػցֶशʹઓ Ϙτϧͷϥϕϧ͔ΒฑΛผ ը૾ೝࣝ ਖ਼ ɹ72% ςετ݁Ռ
ΟεΩʔͰػցֶशʹઓ Ϙτϧͷϥϕϧ͔ΒฑΛผ ը૾ೝࣝ ͬͯΈͨ݁Ռ ▪ը૾ͷલॲཧ෦ ɹɹɾࠓճϥϕϧΞοϓͷը૾͔ΓΛ༻ͨ͠ͷͰɺ ɹɹɹҾ͖ͷࣸਅʹରԠͰ͖ͳ͍ʢͬͯΈͨΒյ໓తʣ ɹɹɾഎܠͱ͔ະߟྀͷ·· ɹɹɾOpenCVʁͳʹͦΕ ▪ֶश෦
ɹɹɾಛྔϕʔε(BoVW)ͰͷֶशΛ࠾༻͚ͨ͠Ͳɺ ɹɹɹσΟʔϓϥʔχϯά͏ͱͬͱਫ਼͕͋Δͷ͔ͳ
WEBͷใ͔Β֤ฑͷಛΛநग़ ςΩετղੳ ΟεΩʔͰػցֶशʹઓ ̍ʣWebαΠτ͔Β֤ฑͷઆ໌ίϝϯτΛεΫϨΠϐϯά ̎ʣmecabͰ୯ޠʹׂ͠ɺܗ༰ࢺͱ෭ࢺ͚ͩऔΓग़͢ ̏ʣग़ݱͨ͠୯ޠΛ·ͱΊɺTFIDFܭࢉͰಛతͳޠΛಛఆ ̐ʣ୯ޠΛͬͯࣅ͍ͯΔฑΛΫϥελϦϯά
WEBͷใ͔Β֤ฑͷಛΛநग़ ςΩετղੳ ΟεΩʔͰػցֶशʹઓ ̍ʣWebαΠτ͔Β֤ฑͷઆ໌ίϝϯτΛεΫϨΠϐϯά beautiful soupΛ༻ ɹɹᶃHTMLऔಘ ɹɹᶄ΄͍͠ใͷ෦ͷλάΛݟ͚ͭΔ ɹɹᶅߏղੳͯ͠ಛఆ෦Λநग़ ɹɹᶆσʔλϑϨʔϜʹม͢Δ
WEBͷใ͔Β֤ฑͷಛΛநग़ ςΩετղੳ ΟεΩʔͰػցֶशʹઓ ̍ʣWebαΠτ͔Β֤ฑͷઆ໌ίϝϯτΛεΫϨΠϐϯά beautiful soupΛ༻ ɹɹᶃHTMLऔಘ ɹɹᶄ΄͍͠ใͷ෦ͷλάΛݟ͚ͭΔ ɹɹᶅߏղੳͯ͠ಛఆ෦Λநग़ ɹɹᶆσʔλϑϨʔϜʹม͢Δ
্ख͍͔ͣ͘ ࣌ؒΛ࿘අ
WEBͷใ͔Β֤ฑͷಛΛநग़ ςΩετղੳ ΟεΩʔͰػցֶशʹઓ ̍ʣWebαΠτ͔Β֤ฑͷઆ໌ίϝϯτΛεΫϨΠϐϯά
WEBͷใ͔Β֤ฑͷಛΛநग़ ςΩετղੳ ΟεΩʔͰػցֶशʹઓ ̍ʣWebαΠτ͔Β֤ฑͷઆ໌ίϝϯτΛεΫϨΠϐϯά
WEBͷใ͔Β֤ฑͷಛΛநग़ ςΩετղੳ ΟεΩʔͰػցֶशʹઓ ̍ʣWebαΠτ͔Β֤ฑͷઆ໌ίϝϯτΛεΫϨΠϐϯά ฑͷղઆจ ޱίϛจ ͳΜͱ͔εΫϨΠϐϯάྃ ख࡞ۀͰCSV࡞
WEBͷใ͔Β֤ฑͷಛΛநग़ ςΩετղੳ ΟεΩʔͰػցֶशʹઓ ̎ʣmecabͰ୯ޠʹׂ͠ɺܗ༰ࢺͱ෭ࢺ͚ͩऔΓग़͢ ߳Γڧ͍Ͱ͕͢ɺຯ͖ͬ͢Γ͍ͯͯ͠ɺඒຯ͍͠Ͱ͢ɻ ߳Γ//ڧ͍/Ͱ͢/͕/ɺ/ຯ//͖ͬ͢Γ/ͯ͠/͍ͯ/ɺ /ඒຯ͍͠/Ͱ͢/ɻ
WEBͷใ͔Β֤ฑͷಛΛநग़ ςΩετղੳ ΟεΩʔͰػցֶशʹઓ ̏ʣग़ݱͨ͠୯ޠΛ·ͱΊɺTFIDFܭࢉͰಛతͳޠΛಛఆ BoW(Bag-of-Words) ܗࣜʹม จॻ ߦྻԽ TFIDF ܭࢉ
WEBͷใ͔Β֤ฑͷಛΛநग़ ςΩετղੳ ΟεΩʔͰػցֶशʹઓ ̏ʣग़ݱͨ͠ܗ༰ࢺΛ·ͱΊɺTFIDFܭࢉͰಛతͳޠΛಛఆ TFIDF=TF×IDF TF→Ұ࿈ͷจॻͷͦͷ୯ޠͷग़ݱස IDF→ʢͦͷ୯ޠ͕͋Δจॻͷʗશจॻʣͷٯ ʲͦͷจॻΒ͠͞ʳ ɹͦͷจॻͰଟ͘Ͱͯ͘ΔͷʹɺଞͷจॻͰ͋·ΓͰͯ͜ͳ͍୯ޠ BoW(Bag-of-Words)ܗࣜʹม
จॻߦྻԽ TFIDFܭࢉ BoWܗࣜ=จॻΛͱͯ͠ѻ͏ʢϕΫτϧԽ͢Δʣ ※ࠓճTFʢ୯ޠͷग़ݱසʣΛ༻
WEBͷใ͔Β֤ฑͷಛΛநग़ ςΩετղੳ ΟεΩʔͰػցֶशʹઓ ̐ʣ୯ޠΛͬͯࣅ͍ͯΔฑΛΫϥελϦϯά ֤ฑͷಛతͳ୯ޠTOP5Λͬͯ5ͭʹΫϥελϦϯά …͠Α͏ͱࢥͬͨΒ ˎ൱ఆʮͳ͍ʯͷߟྀ ˎআ֎ͨ͠΄͕͍͍୯ޠ ɹɹɹɹɹɹɹɹɹ ߟྀෆͰɺ
ͳ͍ΫϥελϦϯάʹ
͖ͳฑ͔ΒͨͿΜ͓ޱʹ߹͏ͷΛਪન Ϩίϝϯυ ΟεΩʔͰػցֶशʹઓ ຊ·Ͱʹ౸ୡͰ͖ͣ…ɻ ڧௐϑΟϧλϦϯάͱ͔ͰΓ͔͚ͨͬͨͲɺ ·ͣσʔλΛूΊΔͱ͍͏࠷େͷน͕ͬͯΔɻ
ΟεΩʔͰػցֶशʹઓͷཱྀଓ͘… Ϙτϧͷϥϕϧ͔ΒฑΛผ ը૾ೝࣝ WEBͷใ͔Β֤ฑͷಛΛநग़ ςΩετղੳ ͖ͳฑ͔ΒͨͿΜ͓ޱʹ߹͏ͷΛਪન Ϩίϝϯυ ˎਫ਼্ʂ90%ਖ਼ղ͍ͨ͠ɻOpenCVͬͯΈ͍ͨ ˎσʔλ૿ྔͱ൱ఆޠআ֎બఆɺϊΠζͷѻ͍ͷߟྀ ˎ͜Ε͔ΒؤுΔʂϢʔβෳධՁͰڧௐϑΟϧλϦϯά
WebΞϓϦέʔγϣϯ
·ͱΊ ˎPytonistaʹಌΕͨҰհͷੳͨͿΜPyLv1.5͘Β͍ʹͳΕͨ ˎ࠷ॳͷӈࠨΘ͔Βͳ͍࣌ɺؒͱҰॹ͕͍͍ ˎࣗͷڵຯͱֻ͚߹ΘͤΔͷͬͯؤுΓ͕࣋ଓ͢Δ ˎσʔλूΊΔͷେมͬͯᷚຊͩͬͨ ˎ·͡ͰwebΞϓϦέʔγϣϯΘ͔Γ·ͤΜ ɹಘҙͳਓɺͪΐͬͱͬͯΔਓɺ͓༑ୡʹͳ͍ͬͯͩ͘͞
͋Γ͕ͱ͏͍͟͝·ͨ͠ɻ