3, 64], 64)
conv1_2 = _conv('conv1_2', conv1_1, [3, 3, 64, 64], 64)
pool1 = _pool('pool1', conv1_2, [1, 2, 2, 1])
conv2_1 = _conv('conv2_1', pool1, [3, 3, 64, 128], 128)
conv2_2 = _conv('conv2_2', conv2_1, [3, 3, 128, 128], 128)
pool2 = _pool('pool2', conv2_2, [1, 2, 2, 1])
conv3_1 = _conv('conv3_1', pool2, [3, 3, 128, 256], 256)
conv3_2 = _conv('conv3_2', conv3_1, [3, 3, 256, 256], 256)
pool3 = _pool('pool3', conv3_2, [1, 2, 2, 1])
܇࿅༻ͷάϥϑ reshape = tf.reshape(pool3, [batch_size, -1])
dim = reshape.get_shape()[1].value
fc4 = _fc('fc4', reshape, [dim, 512], 512, keep_prob)
fc5 = _fc('fc5', fc4, [512, 256], 256, keep_prob)
# output
with tf.variable_scope('output') as scope:
weights = _get_weights(shape=[256, NUM_CLASSES], stddev=1 / 256.0)
biases = _get_biases([NUM_CLASSES], value=0.0)
logits = tf.add(tf.matmul(fc5, weights), biases, name='logits')
return logits