Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Kaggle Drivenな顧客予測への挑戦
Search
KeisukeShimokawa
December 20, 2018
Technology
0
73
Kaggle Drivenな顧客予測への挑戦
LT for PyData.Fukuoka #1
Dec. 20th, 2018
KeisukeShimokawa
December 20, 2018
Tweet
Share
More Decks by KeisukeShimokawa
See All by KeisukeShimokawa
0から始めるMetric Learning
keisukeshimokawa
0
1.2k
Other Decks in Technology
See All in Technology
Four Keysから始める信頼性の改善 - SRE NEXT 2025
ozakikota
0
220
Claude Code に プロジェクト管理やらせたみた
unson
8
5k
QuickSight SPICE の効果的な運用戦略~S3 + Athena 構成での実践ノウハウ~/quicksight-spice-s3-athena-best-practices
emiki
0
260
ロールが細分化された組織でSREは何をするか?
tgidgd
1
210
Lufthansa ®️ USA Contact Numbers: Complete 2025 Support Guide
lufthanahelpsupport
0
250
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
3
990
事例で学ぶ!B2B SaaSにおけるSREの実践例/SRE for B2B SaaS: A Real-World Case Study
bitkey
1
340
クラウド開発の舞台裏とSRE文化の醸成 / SRE NEXT 2025 Lunch Session
kazeburo
1
460
TableauLangchainとは何か?
cielo1985
1
160
助けて! XからWaylandに移行しないと新しいGNOMEが使えなくなっちゃう 2025-07-12
nobutomurata
2
150
ポストコロナ時代の SaaS におけるコスト削減の意義
izzii
1
330
american airlines®️ USA Contact Numbers: Complete 2025 Support Guide
supportflight
1
120
Featured
See All Featured
Making Projects Easy
brettharned
116
6.3k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Agile that works and the tools we love
rasmusluckow
329
21k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
What's in a price? How to price your products and services
michaelherold
246
12k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
Designing for Performance
lara
610
69k
Writing Fast Ruby
sferik
628
62k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Transcript
Kaggle Drivenな 顧客予測への挑戦 PyData.Fukuoka Meetup #1 – 年末LT大会 Dec. 20th,
2018 shimopino (@shimoke4869)
自己紹介 2 • 下川 啓介 @shimoke4869 • 九州大学 総合理工学府 大気海洋環境システム学専攻
研究内容:宇宙プラズマと宇宙線の相互作用の効果 • 解析の経験 Python歴:1年強 機械学習:1年弱(2018年度から勉強) Kaggleは7月に初大会参加 6月からトライアルでアルバイト
トライアルでのタスク 3 時間帯別 顧客予測 売上予測 発注予測 作業計画 製造指示 人事確保 適正値下
挑戦結果 4 R2 = 0.9967 • 挑戦した結果 各点は、1店舗の1週間分の各時間帯別 のPOS客数の実績と予測 (1店舗1日に平均で
-40人程度の誤差) 解析店舗数=226 経験があるからできた? じつはテーブルデータは未経験 (Titanicはコードを眺めたのみ)
どうやって取り組んだのか 5 1. 大会の概要とデータを注意深く観察する。 2. 似た大会を探し、その大会のデータを観察する。 3. 似た大会の解法を読む 4. その分野の見逃している発展的な論文を読む。
5. … • 現在1位のKaggler、bestfittingさんの取り組み方 個人的に最も重要 • 例えば... ・RSMEとRMSLEの違い ・指数移動平均の最適化 ・Pandasの各メソッドの使用法 ・Pandasの高速化 などなど
どうやって取り組んだのか 6 • 例えば... ・「先月」のデータでも十分機能 ・日ごと月ごとの売り上げ平均はうまく 機能しない場合もある。 ・政府の所得統計データを利用する ・季節調整データの使用法 ・クリスマスなどの特殊イベント時での
売り上げデータの調整方法 ・機械学習モデルと統計モデルのブレンド (scikit-learnでのモデル、statsのarimaモデル)
具体的にどうすればいいのか 7 • リクルートコンペを例にまとめてます!(更新中ですが) Kaggle Advent Calendar 2018 その2 明日(21日)に
Kaggleもくもく会! ぜひ参加してください! 週末にKaggleのリバース エンジニアリングなどを わいわいやってみたい…