Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ゼロつく2 輪読会 3.4-3.6
Search
keitaro2002
April 06, 2024
Programming
0
40
ゼロつく2 輪読会 3.4-3.6
keitaro2002
April 06, 2024
Tweet
Share
More Decks by keitaro2002
See All by keitaro2002
ゼロつく2 輪読会 3.1-3.3
keitaro2002
0
26
Other Decks in Programming
See All in Programming
Cline指示通りに動かない? AI小説エージェントで学ぶ指示書の書き方と自動アップデートの仕組み
kamomeashizawa
1
580
LT 2025-06-30: プロダクトエンジニアの役割
yamamotok
0
540
システム成長を止めない!本番無停止テーブル移行の全貌
sakawe_ee
1
140
既存デザインを変更せずにタップ領域を広げる方法
tahia910
1
240
ニーリーにおけるプロダクトエンジニア
nealle
0
580
AIエージェントはこう育てる - GitHub Copilot Agentとチームの共進化サイクル
koboriakira
0
450
Enterprise Web App. Development (2): Version Control Tool Training Ver. 5.1
knakagawa
1
120
プロダクト志向なエンジニアがもう一歩先の価値を目指すために意識したこと
nealle
0
110
型付きアクターモデルがもたらす分散シミュレーションの未来
piyo7
0
810
なぜ適用するか、移行して理解するClean Architecture 〜構造を超えて設計を継承する〜 / Why Apply, Migrate and Understand Clean Architecture - Inherit Design Beyond Structure
seike460
PRO
1
700
Rubyでやりたい駆動開発 / Ruby driven development
chobishiba
1
460
都市をデータで見るってこういうこと PLATEAU属性情報入門
nokonoko1203
1
570
Featured
See All Featured
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
700
Balancing Empowerment & Direction
lara
1
380
Building an army of robots
kneath
306
45k
The Cult of Friendly URLs
andyhume
79
6.5k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.6k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
YesSQL, Process and Tooling at Scale
rocio
173
14k
KATA
mclloyd
29
14k
4 Signs Your Business is Dying
shpigford
184
22k
What's in a price? How to price your products and services
michaelherold
246
12k
We Have a Design System, Now What?
morganepeng
53
7.7k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3k
Transcript
ゼロつく2 輪読会 Part4 3.4~3.6 2024年 3⽉10⽇
‣ これ以降の図は以下より引⽤ 斎藤 康毅 「ゼロから作るDeep Learning ❷―⾃然⾔語処理編」 はじめに
‣ 前回の復習 ‣ CBOWモデルの実装 ‣ word2vecに関する補⾜ ⽬次
前回の復習
‣ カウントベース→推論ベース ‣ ミニバッチ学習 ‣ 周囲のコンテキストから出現確率を推測 ‣ one-hotベクトル処理 ‣ CBOW(Continuous
Bag-Of-Word) ‣ ⼊⼒層 = (B,N,L) (B: バッチサイズ,N: コンテキスト 数,L: コーパスの⻑さ) 前回の復習
CBOWの実装
学習 モデルアーキテクチャ 逆伝播の様⼦ optimizer : Adam
学習 loss推移 分散表現 コサイン類似度
word2vecの補⾜
‣ CBOWモデルを数式で考えてみる. ‣ 損失関数 ‣ 教師ラベル𝑡! は𝑤" に対応する箇所が1でその他は0 →𝑃(𝑤" |𝑤"#$
, 𝑤"%$ )のみが残る. ‣ コーパス全体 CBOWモデルと確率
‣ ターゲットからコンテキストを推測する. ‣ 損失関数 skip-gramモデル
‣ 推論ベース ‣ 語彙に新しい単語→学習済み重みを初期値として,パラ メータの再学習が可能 ‣ より複雑な単語間のパターンも捉えられる. ‣ 実際は単語の類似性に関する定量評価では優劣が つけられない
カウントベースvs推論ベース
Appendix
ソースコード 概要 ch3 simple_cbow.py train.py common layers.py optimizer.py trainer.py util.py
functions.py
‣ softmax ‣ cross_entropy_error functions.py
‣ MatMul ‣ init ‣params, grads ‣x (backwardで使⽤) ‣ forward
‣paramsとxを⾏列計算 ‣xを保持 ‣ backward ‣dx,dWを計算 ‣ SoftmaxWithLoss ‣ init ‣params, grads ‣y (softmaxの出⼒) ‣t (教師ラベル) ‣ forward ‣softmax ‣cross_entropy_error ‣ backward ‣dx layers.py
‣ Adam ‣ init ‣lr (学習率) optimizer.py
‣ init ‣ fit ‣ plot trainer.py
util.py