Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Tokyo.R #97 Data Visualization
Search
kilometer
March 19, 2022
Technology
1
370
Tokyo.R #97 Data Visualization
第97回Tokyo.Rの初心者セッションでトークした際のスライドです。
kilometer
March 19, 2022
Tweet
Share
More Decks by kilometer
See All by kilometer
TokyoR#111_ANOVA
kilometer
2
920
TokyoR109.pdf
kilometer
1
510
TokyoR#108_NestedDataHandling
kilometer
0
880
TokyoR#107_R_GeoData
kilometer
0
470
SappoRo.R_roundrobin
kilometer
0
170
TokyoR#104_DataProcessing
kilometer
1
730
TokyoR#103_DataProcessing
kilometer
0
940
TokyoR#102_RMarkdown
kilometer
1
690
TokyoR#101_RegressionAnalysis
kilometer
0
520
Other Decks in Technology
See All in Technology
ソフトウェアエンジニアとデータエンジニアの違い・キャリアチェンジ
mtpooh
1
710
【Android】テキスト選択色の問題修正で心がけたこと
tonionagauzzi
0
120
設計は最強のプロンプト - AI時代に武器にすべきスキルとは?-
kenichirokimura
1
310
[2025-11-06] ベイズ最適化の基礎とデザイン支援への応用(CVIMチュートリアル)
yuki_koyama
1
260
仕様駆動 x Codex で 超効率開発
ismk
1
840
Boxを“使われる場”にする統制と自動化の仕組み
demaecan
0
230
よくわからない人向けの IAM Identity Center とちょっとした落とし穴
kazzpapa3
2
620
Snowflakeとdbtで加速する 「TVCMデータで価値を生む組織」への進化論 / Evolving TVCM Data Value in TELECY with Snowflake and dbt
carta_engineering
2
220
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
3
1.3k
文字列操作の達人になる ~ Kotlinの文字列の便利な世界 ~ - Kotlin fest 2025
tomorrowkey
2
580
Master Dataグループ紹介資料
sansan33
PRO
1
3.9k
エンジニアに定年なし! AI時代にキャリアをReboot — 学び続けて未来を創る
junjikoide
0
130
Featured
See All Featured
Done Done
chrislema
186
16k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Gamification - CAS2011
davidbonilla
81
5.5k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.8k
Building a Scalable Design System with Sketch
lauravandoore
463
33k
A better future with KSS
kneath
239
18k
Typedesign – Prime Four
hannesfritz
42
2.9k
Building an army of robots
kneath
306
46k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
Docker and Python
trallard
46
3.6k
Optimizing for Happiness
mojombo
379
70k
Transcript
#97 @kilometer00 2022.03.19 BeginneR Session -- Data Visualization --
Who!? 誰だ?
Who!? 名前: 三村 @kilometer 職業: ポスドク (こうがくはくし) 専⾨: ⾏動神経科学(霊⻑類) 脳イメージング
医療システム⼯学 R歴: ~ 10年ぐらい 流⾏: むし社
宣伝!!(書籍の翻訳に参加しました。)
BeginneR Session
BeginneR
Beginne R Advance d Hoxo_m If I have seen further
it is by standing on the shoulders of Giants. -- Sir Isaac Newton, 1676
Before After BeginneR Session BeginneR BeginneR
"a" != "b" # is A in B? ブール演算⼦ Boolean
Algebra [1] TRUE 1 %in% 10:100 # is A in B? [1] FALSE
George Boole 1815 - 1864 A Class-Room Introduc2on to Logic
h7ps://niyamaklogic.wordpress.com/c ategory/laws-of-thoughts/ Mathema;cian Philosopher &
ブール演算⼦ Boolean Algebra A == B A != B George
Boole 1815 - 1864 A | B A & B A %in% B # equal to # not equal to # or # and # is A in B? wikipedia
Programing
Programing
Programing Write Run Read Think Write Run Read Think Communicate
Share
Text Image Information Intention Data decode encode Data analysis feedback
≠
Text Image First, A. Next, B. Then C. Finally D.
time Intention encode "Frozen" structure A B C D 8me value α β
σʔλ 情報のうち意思伝達・解釈・処理に 適した再利⽤可能なもの 国際電気標準会議(International Electrotechnical Commission, IEC)による定義
σʔλ 情報のうち意思伝達・解釈・処理に 適した再利⽤可能なもの ใ 実存を符号化した表象
σʔλ ใͷ͏ͪҙࢥୡɾղऍɾॲཧʹ దͨ͠࠶ར༻Մೳͳͷ ใ ࣮ଘΛූ߸Խͨ͠ද ࣮ଘ ؍ͷ༗ແʹΑΒͣଘࡏ͍ͯ͠Δ ͷͦͷͷ ࣸ૾ʢූ߸Խʣ
ࣸ૾ Ϧϯΰ ʢ࣮ଘʣ Ϧϯΰ ʢใʣ mapping
ࣸ૾ (mapping) 𝑓: 𝑋 → 𝑌 𝑋 𝑌 ͋Δใͷू߹ͷཁૉΛɺผͷใͷू߹ͷ ͨͩͭͷཁૉʹରԠ͚ͮΔϓϩηε
ใྔ ࣮ଘ ใ σʔλ Ϧϯΰ ූ߸Խ
ใྔ ࣮ଘ ใ σʔλ Ϧϯΰ ූ߸Խ ใྔͷଛࣦ
Ϧϯΰ ࣸ૾ ϑϧʔπ ৭ ը૾ ࣮ଘ ใ νϟωϧ mapping
channel
𝑋 𝑌 𝑦! 𝑥! 𝑦" 𝑥" 𝑋 𝑌 𝑥! 𝑥"
𝑦! 𝑦" σʔλՄࢹԽ ࣸ૾ mapping
𝑋 𝑌 𝑦! 𝑥! 𝑦" 𝑥" 𝑋 𝑌 𝑥! 𝑥"
𝑦! 𝑦" σʔλՄࢹԽ ࣸ૾ mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels ৹ඒతνϟωϧ
𝑋 𝑌 𝑦! 𝑥! 𝑦" 𝑥" 𝑋 𝑌 𝑥! 𝑥"
𝑦! 𝑦" σʔλՄࢹԽ ࣸ૾ mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels ৹ඒతνϟωϧ ggplot(data = my_data) + aes(x = X, y = Y)) + goem_point() HHQMPUʹΑΔ࡞ਤ
࣮ଘ ࣸ૾ʢ؍ʣ σʔλ ࣸ૾ʢσʔλՄࢹԽʣ άϥϑ 𝑋 𝑌 𝑦! 𝑥! 𝑦"
𝑥" 𝑋 𝑌 𝑥! 𝑥" 𝑦! 𝑦" EBUB mapping aesthetic channels ৹ඒతνϟωϧ σʔλՄࢹԽ
ॳΊͯͷHHQMPU library(tidyverse) dat <- data.frame(tag = rep(c("a", "b"), each =
2), X = c(1, 3, 5, 7), Y = c(3, 9, 4, 2)) ggplot() + geom_point(data = dat, mapping = aes(x = X, y = Y))
ॳΊͯͷHHQMPU
ॳΊͯͷHHQMPU library(tidyverse) dat <- data.frame(tag = rep(c("a", "b"), each =
2), X = c(1, 3, 5, 7), Y = c(3, 9, 4, 2)) ggplot() + geom_point(data = dat, mapping = aes(x = X, y = Y)) EBUBGSBNFͷࢦఆ BFT ؔͷதͰ৹ඒతཁૉͱͯ͠มͱνϟωϧͷରԠΛࢦఆ ඳը։࢝Λએݴ ه߸Ͱͭͳ͙ BFT ؔͷҾ໊ EBUͷม໊ άϥϑͷछྨʹ߹ΘͤͨHFPN@ ؔΛ༻
library(tidyverse) dat <- data.frame(tag = rep(c("a", "b"), each = 2),
X = c(1, 3, 5, 7), Y = c(3, 9, 4, 2)) ggplot() + geom_point(data = dat, mapping = aes(x = X, y = Y)) + geom_path(data = dat, mapping = aes(x = X, y = Y)) ॳΊ͔ͯΒ൪ͷHHQMPU
ॳΊ͔ͯΒ൪ͷHHQMPU
HHQMPUίʔυͷॻ͖ํͷ৭ʑ ggplot() + geom_point(data = dat, mapping = aes(x =
X, y = Y)) + geom_path(data = dat, mapping = aes(x = X, y = Y)) ggplot(data = dat, mapping = aes(x = X, y = Y)) + geom_point() + geom_path() ggplot(data = dat) + aes(x = X, y = Y) + geom_point() + geom_path() ڞ௨ͷࢦఆΛHHQMPU ؔͷதͰߦ͍ɺҎԼলུ͢Δ͜ͱ͕Մೳ NBQQJOHͷใ͕ॻ͔ΕͨBFT ؔΛHHQMPU ؔͷ֎ʹஔ͘͜ͱͰ͖Δ
HHQMPUίʔυͷॻ͖ํͷ৭ʑ ggplot() + geom_point(data = dat, mapping = aes(x =
X, y = Y, color = tag)) + geom_path(data = dat, mapping = aes(x = X, y = Y)) ggplot(data = dat) + aes(x = X, y = Y) + # 括り出すのは共通するものだけ geom_point(mapping = aes(color = tag)) + geom_path() ϙΠϯτͷ৭ͷNBQQJOHΛࢦఆ
HHQMPUίʔυͷॻ͖ํͷ৭ʑ ggplot(data = dat) + aes(x = X, y =
Y) + geom_point(aes(color = tag)) + geom_path() ggplot(data = dat) + aes(x = X, y = Y) + geom_path() + geom_point(aes(color = tag)) ͋ͱ͔Β ͰॏͶͨཁૉ͕લ໘ʹඳը͞ΕΔ
library(tidyverse) dat <- data.frame(tag = rep(c("a", "b"), each = 2),
X = c(1, 3, 5, 7), Y = c(3, 9, 4, 2)) g <- ggplot(data = dat) + aes(x = X, y = Y) + geom_path() + geom_point(mapping = aes(color = tag)) HHQMPUը૾ͷอଘ ggsave(filename = "fig/demo01.png", plot = g, width = 4, height = 3, dpi = 150)
library(tidyverse) dat <- data.frame(tag = rep(c("a", "b"), each = 2),
X = c(1, 3, 5, 7), Y = c(3, 9, 4, 2)) g <- ggplot(data = dat) + aes(x = X, y = Y) + geom_path() + geom_point(mapping = aes(color = tag)) HHQMPUը૾ͷอଘ ggsave(filename = "fig/demo01.png", plot = g, width = 4, height = 3, dpi = 150) αΠζσϑΥϧτͰΠϯν୯ҐͰࢦఆ
library(tidyverse) dat <- data.frame(tag = rep(c("a", "b"), each = 2),
X = c(1, 3, 5, 7), Y = c(3, 9, 4, 2)) g <- ggplot(data = dat) + aes(x = X, y = Y) + geom_path() + geom_point(mapping = aes(color = tag)) HHQMPUը૾ͷอଘ ggsave(filename = "fig/demo01.png", plot = g, width = 10, height = 7.5, dpi = 150, units = "cm") # "cm", "mm", "in"を指定可能
HFNP@ ؔ܈ DGIUUQTXXXSTUVEJPDPNSFTPVSDFTDIFBUTIFFUT
ෳͷܥྻΛඳը͢Δ > head(anscombe) x1 x2 x3 x4 y1 y2 y3
y4 1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 4 9 9 9 8 8.81 8.77 7.11 8.84 5 11 11 11 8 8.33 9.26 7.81 8.47 6 14 14 14 8 9.96 8.10 8.84 7.04 ggplot(data = anscombe) + geom_point(aes(x = x1, y = y1)) + geom_point(aes(x = x2, y = y2), color = "Red") + geom_point(aes(x = x3, y = y3), color = "Blue") + geom_point(aes(x = x4, y = y4), color = "Green") ͜Ε·ͰͷࣝͰؤுΔͱ͜͏ͳΔ
HHQMPUʹΑΔσʔλՄࢹԽ ࣮ଘ ࣸ૾ʢ؍ʣ σʔλ ࣸ૾ʢσʔλՄࢹԽʣ άϥϑ 𝑋 𝑌 𝑦! 𝑥!
𝑦" 𝑥" SBXEBUB 写像 aesthetic channels ৹ඒతνϟωϧ ՄࢹԽʹదͨ͠EBUBܗࣜ 変形 ਤͷͭͷ৹ඒతνϟωϧ͕ σʔλͷͭͷมʹରԠ͍ͯ͠Δ
> head(anscombe) x1 x2 x3 x4 y1 y2 y3 y4
1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 4 9 9 9 8 8.81 8.77 7.11 8.84 5 11 11 11 8 8.33 9.26 7.81 8.47 6 14 14 14 8 9.96 8.10 8.84 7.04 > head(anscombe_long) key x y 1 1 10 8.04 2 2 10 9.14 3 3 10 7.46 4 4 8 6.58 5 1 8 6.95 6 2 8 8.14 ggplot(data = anscombe_long) + aes(x = x, y = y, color = key) + geom_point() ৹ඒతνϟωϧ Y࣠ Z࣠ ৭ ʹରԠ͢ΔมʹͳΔΑ͏มܗ ݟ௨͠ྑ͘γϯϓϧʹՄࢹԽͰ͖Δ
> head(anscombe) x1 x2 x3 x4 y1 y2 y3 y4
1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 4 9 9 9 8 8.81 8.77 7.11 8.84 5 11 11 11 8 8.33 9.26 7.81 8.47 6 14 14 14 8 9.96 8.10 8.84 7.04 > head(anscombe_long) key x y 1 1 10 8.04 2 2 10 9.14 3 3 10 7.46 4 4 8 6.58 5 1 8 6.95 6 2 8 8.14 ৹ඒతνϟωϧ Y࣠ Z࣠ ৭ ʹରԠ͢ΔมʹͳΔΑ͏มܗ anscombe_long <- pivot_longer(data = anscombe, cols = everything(), names_to = c(".value", "key"), names_pattern = "(.)(.)") ԣσʔλ ॎσʔλ
ggplot(data = anscombe_long) + aes(x = x, y = y,
color = key) + geom_point() ggplot(data = anscombe_long) + aes(x = x, y = y, color = key) + geom_point() + facet_wrap(facets = . ~ key, nrow = 1) ਫ४ͰਤΛׂ͢Δ
Wide Long Nested input output pivot_longer pivot_wider group_nest unnest ggplot
visualization map output ggsave
Enjoy!! KMT©