Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Tokyo.R #97 Data Visualization
Search
kilometer
March 19, 2022
Technology
1
360
Tokyo.R #97 Data Visualization
第97回Tokyo.Rの初心者セッションでトークした際のスライドです。
kilometer
March 19, 2022
Tweet
Share
More Decks by kilometer
See All by kilometer
TokyoR#111_ANOVA
kilometer
2
920
TokyoR109.pdf
kilometer
1
500
TokyoR#108_NestedDataHandling
kilometer
0
870
TokyoR#107_R_GeoData
kilometer
0
470
SappoRo.R_roundrobin
kilometer
0
160
TokyoR#104_DataProcessing
kilometer
1
730
TokyoR#103_DataProcessing
kilometer
0
930
TokyoR#102_RMarkdown
kilometer
1
680
TokyoR#101_RegressionAnalysis
kilometer
0
510
Other Decks in Technology
See All in Technology
AIのグローバルトレンド2025 #scrummikawa / global ai trend
kyonmm
PRO
1
300
💡Ruby 川辺で灯すPicoRubyからの光
bash0c7
0
120
新規プロダクトでプロトタイプから正式リリースまでNext.jsで開発したリアル
kawanoriku0
1
160
COVESA VSSによる車両データモデルの標準化とAWS IoT FleetWiseの活用
osawa
1
350
AWSを利用する上で知っておきたい名前解決のはなし(10分版)
nagisa53
10
3.2k
普通のチームがスクラムを会得するたった一つの冴えたやり方 / the best way to scrum
okamototakuyasr2
0
100
JTCにおける内製×スクラム開発への挑戦〜内製化率95%達成の舞台裏/JTC's challenge of in-house development with Scrum
aeonpeople
0
250
現場で効くClaude Code ─ 最新動向と企業導入
takaakikakei
1
260
S3アクセス制御の設計ポイント
tommy0124
3
200
【実演版】カンファレンス登壇者・スタッフにこそ知ってほしいマイクの使い方 / 大吉祥寺.pm 2025
arthur1
1
890
これでもう迷わない!Jetpack Composeの書き方実践ガイド
zozotech
PRO
0
1k
20250912_RPALT_データを集める→とっ散らかる問題_Obsidian紹介
ratsbane666
0
100
Featured
See All Featured
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
How STYLIGHT went responsive
nonsquared
100
5.8k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Why Our Code Smells
bkeepers
PRO
339
57k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Agile that works and the tools we love
rasmusluckow
330
21k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.9k
How to Ace a Technical Interview
jacobian
279
23k
Transcript
#97 @kilometer00 2022.03.19 BeginneR Session -- Data Visualization --
Who!? 誰だ?
Who!? 名前: 三村 @kilometer 職業: ポスドク (こうがくはくし) 専⾨: ⾏動神経科学(霊⻑類) 脳イメージング
医療システム⼯学 R歴: ~ 10年ぐらい 流⾏: むし社
宣伝!!(書籍の翻訳に参加しました。)
BeginneR Session
BeginneR
Beginne R Advance d Hoxo_m If I have seen further
it is by standing on the shoulders of Giants. -- Sir Isaac Newton, 1676
Before After BeginneR Session BeginneR BeginneR
"a" != "b" # is A in B? ブール演算⼦ Boolean
Algebra [1] TRUE 1 %in% 10:100 # is A in B? [1] FALSE
George Boole 1815 - 1864 A Class-Room Introduc2on to Logic
h7ps://niyamaklogic.wordpress.com/c ategory/laws-of-thoughts/ Mathema;cian Philosopher &
ブール演算⼦ Boolean Algebra A == B A != B George
Boole 1815 - 1864 A | B A & B A %in% B # equal to # not equal to # or # and # is A in B? wikipedia
Programing
Programing
Programing Write Run Read Think Write Run Read Think Communicate
Share
Text Image Information Intention Data decode encode Data analysis feedback
≠
Text Image First, A. Next, B. Then C. Finally D.
time Intention encode "Frozen" structure A B C D 8me value α β
σʔλ 情報のうち意思伝達・解釈・処理に 適した再利⽤可能なもの 国際電気標準会議(International Electrotechnical Commission, IEC)による定義
σʔλ 情報のうち意思伝達・解釈・処理に 適した再利⽤可能なもの ใ 実存を符号化した表象
σʔλ ใͷ͏ͪҙࢥୡɾղऍɾॲཧʹ దͨ͠࠶ར༻Մೳͳͷ ใ ࣮ଘΛූ߸Խͨ͠ද ࣮ଘ ؍ͷ༗ແʹΑΒͣଘࡏ͍ͯ͠Δ ͷͦͷͷ ࣸ૾ʢූ߸Խʣ
ࣸ૾ Ϧϯΰ ʢ࣮ଘʣ Ϧϯΰ ʢใʣ mapping
ࣸ૾ (mapping) 𝑓: 𝑋 → 𝑌 𝑋 𝑌 ͋Δใͷू߹ͷཁૉΛɺผͷใͷू߹ͷ ͨͩͭͷཁૉʹରԠ͚ͮΔϓϩηε
ใྔ ࣮ଘ ใ σʔλ Ϧϯΰ ූ߸Խ
ใྔ ࣮ଘ ใ σʔλ Ϧϯΰ ූ߸Խ ใྔͷଛࣦ
Ϧϯΰ ࣸ૾ ϑϧʔπ ৭ ը૾ ࣮ଘ ใ νϟωϧ mapping
channel
𝑋 𝑌 𝑦! 𝑥! 𝑦" 𝑥" 𝑋 𝑌 𝑥! 𝑥"
𝑦! 𝑦" σʔλՄࢹԽ ࣸ૾ mapping
𝑋 𝑌 𝑦! 𝑥! 𝑦" 𝑥" 𝑋 𝑌 𝑥! 𝑥"
𝑦! 𝑦" σʔλՄࢹԽ ࣸ૾ mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels ৹ඒతνϟωϧ
𝑋 𝑌 𝑦! 𝑥! 𝑦" 𝑥" 𝑋 𝑌 𝑥! 𝑥"
𝑦! 𝑦" σʔλՄࢹԽ ࣸ૾ mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels ৹ඒతνϟωϧ ggplot(data = my_data) + aes(x = X, y = Y)) + goem_point() HHQMPUʹΑΔ࡞ਤ
࣮ଘ ࣸ૾ʢ؍ʣ σʔλ ࣸ૾ʢσʔλՄࢹԽʣ άϥϑ 𝑋 𝑌 𝑦! 𝑥! 𝑦"
𝑥" 𝑋 𝑌 𝑥! 𝑥" 𝑦! 𝑦" EBUB mapping aesthetic channels ৹ඒతνϟωϧ σʔλՄࢹԽ
ॳΊͯͷHHQMPU library(tidyverse) dat <- data.frame(tag = rep(c("a", "b"), each =
2), X = c(1, 3, 5, 7), Y = c(3, 9, 4, 2)) ggplot() + geom_point(data = dat, mapping = aes(x = X, y = Y))
ॳΊͯͷHHQMPU
ॳΊͯͷHHQMPU library(tidyverse) dat <- data.frame(tag = rep(c("a", "b"), each =
2), X = c(1, 3, 5, 7), Y = c(3, 9, 4, 2)) ggplot() + geom_point(data = dat, mapping = aes(x = X, y = Y)) EBUBGSBNFͷࢦఆ BFT ؔͷதͰ৹ඒతཁૉͱͯ͠มͱνϟωϧͷରԠΛࢦఆ ඳը։࢝Λએݴ ه߸Ͱͭͳ͙ BFT ؔͷҾ໊ EBUͷม໊ άϥϑͷछྨʹ߹ΘͤͨHFPN@ ؔΛ༻
library(tidyverse) dat <- data.frame(tag = rep(c("a", "b"), each = 2),
X = c(1, 3, 5, 7), Y = c(3, 9, 4, 2)) ggplot() + geom_point(data = dat, mapping = aes(x = X, y = Y)) + geom_path(data = dat, mapping = aes(x = X, y = Y)) ॳΊ͔ͯΒ൪ͷHHQMPU
ॳΊ͔ͯΒ൪ͷHHQMPU
HHQMPUίʔυͷॻ͖ํͷ৭ʑ ggplot() + geom_point(data = dat, mapping = aes(x =
X, y = Y)) + geom_path(data = dat, mapping = aes(x = X, y = Y)) ggplot(data = dat, mapping = aes(x = X, y = Y)) + geom_point() + geom_path() ggplot(data = dat) + aes(x = X, y = Y) + geom_point() + geom_path() ڞ௨ͷࢦఆΛHHQMPU ؔͷதͰߦ͍ɺҎԼলུ͢Δ͜ͱ͕Մೳ NBQQJOHͷใ͕ॻ͔ΕͨBFT ؔΛHHQMPU ؔͷ֎ʹஔ͘͜ͱͰ͖Δ
HHQMPUίʔυͷॻ͖ํͷ৭ʑ ggplot() + geom_point(data = dat, mapping = aes(x =
X, y = Y, color = tag)) + geom_path(data = dat, mapping = aes(x = X, y = Y)) ggplot(data = dat) + aes(x = X, y = Y) + # 括り出すのは共通するものだけ geom_point(mapping = aes(color = tag)) + geom_path() ϙΠϯτͷ৭ͷNBQQJOHΛࢦఆ
HHQMPUίʔυͷॻ͖ํͷ৭ʑ ggplot(data = dat) + aes(x = X, y =
Y) + geom_point(aes(color = tag)) + geom_path() ggplot(data = dat) + aes(x = X, y = Y) + geom_path() + geom_point(aes(color = tag)) ͋ͱ͔Β ͰॏͶͨཁૉ͕લ໘ʹඳը͞ΕΔ
library(tidyverse) dat <- data.frame(tag = rep(c("a", "b"), each = 2),
X = c(1, 3, 5, 7), Y = c(3, 9, 4, 2)) g <- ggplot(data = dat) + aes(x = X, y = Y) + geom_path() + geom_point(mapping = aes(color = tag)) HHQMPUը૾ͷอଘ ggsave(filename = "fig/demo01.png", plot = g, width = 4, height = 3, dpi = 150)
library(tidyverse) dat <- data.frame(tag = rep(c("a", "b"), each = 2),
X = c(1, 3, 5, 7), Y = c(3, 9, 4, 2)) g <- ggplot(data = dat) + aes(x = X, y = Y) + geom_path() + geom_point(mapping = aes(color = tag)) HHQMPUը૾ͷอଘ ggsave(filename = "fig/demo01.png", plot = g, width = 4, height = 3, dpi = 150) αΠζσϑΥϧτͰΠϯν୯ҐͰࢦఆ
library(tidyverse) dat <- data.frame(tag = rep(c("a", "b"), each = 2),
X = c(1, 3, 5, 7), Y = c(3, 9, 4, 2)) g <- ggplot(data = dat) + aes(x = X, y = Y) + geom_path() + geom_point(mapping = aes(color = tag)) HHQMPUը૾ͷอଘ ggsave(filename = "fig/demo01.png", plot = g, width = 10, height = 7.5, dpi = 150, units = "cm") # "cm", "mm", "in"を指定可能
HFNP@ ؔ܈ DGIUUQTXXXSTUVEJPDPNSFTPVSDFTDIFBUTIFFUT
ෳͷܥྻΛඳը͢Δ > head(anscombe) x1 x2 x3 x4 y1 y2 y3
y4 1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 4 9 9 9 8 8.81 8.77 7.11 8.84 5 11 11 11 8 8.33 9.26 7.81 8.47 6 14 14 14 8 9.96 8.10 8.84 7.04 ggplot(data = anscombe) + geom_point(aes(x = x1, y = y1)) + geom_point(aes(x = x2, y = y2), color = "Red") + geom_point(aes(x = x3, y = y3), color = "Blue") + geom_point(aes(x = x4, y = y4), color = "Green") ͜Ε·ͰͷࣝͰؤுΔͱ͜͏ͳΔ
HHQMPUʹΑΔσʔλՄࢹԽ ࣮ଘ ࣸ૾ʢ؍ʣ σʔλ ࣸ૾ʢσʔλՄࢹԽʣ άϥϑ 𝑋 𝑌 𝑦! 𝑥!
𝑦" 𝑥" SBXEBUB 写像 aesthetic channels ৹ඒతνϟωϧ ՄࢹԽʹదͨ͠EBUBܗࣜ 変形 ਤͷͭͷ৹ඒతνϟωϧ͕ σʔλͷͭͷมʹରԠ͍ͯ͠Δ
> head(anscombe) x1 x2 x3 x4 y1 y2 y3 y4
1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 4 9 9 9 8 8.81 8.77 7.11 8.84 5 11 11 11 8 8.33 9.26 7.81 8.47 6 14 14 14 8 9.96 8.10 8.84 7.04 > head(anscombe_long) key x y 1 1 10 8.04 2 2 10 9.14 3 3 10 7.46 4 4 8 6.58 5 1 8 6.95 6 2 8 8.14 ggplot(data = anscombe_long) + aes(x = x, y = y, color = key) + geom_point() ৹ඒతνϟωϧ Y࣠ Z࣠ ৭ ʹରԠ͢ΔมʹͳΔΑ͏มܗ ݟ௨͠ྑ͘γϯϓϧʹՄࢹԽͰ͖Δ
> head(anscombe) x1 x2 x3 x4 y1 y2 y3 y4
1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 4 9 9 9 8 8.81 8.77 7.11 8.84 5 11 11 11 8 8.33 9.26 7.81 8.47 6 14 14 14 8 9.96 8.10 8.84 7.04 > head(anscombe_long) key x y 1 1 10 8.04 2 2 10 9.14 3 3 10 7.46 4 4 8 6.58 5 1 8 6.95 6 2 8 8.14 ৹ඒతνϟωϧ Y࣠ Z࣠ ৭ ʹରԠ͢ΔมʹͳΔΑ͏มܗ anscombe_long <- pivot_longer(data = anscombe, cols = everything(), names_to = c(".value", "key"), names_pattern = "(.)(.)") ԣσʔλ ॎσʔλ
ggplot(data = anscombe_long) + aes(x = x, y = y,
color = key) + geom_point() ggplot(data = anscombe_long) + aes(x = x, y = y, color = key) + geom_point() + facet_wrap(facets = . ~ key, nrow = 1) ਫ४ͰਤΛׂ͢Δ
Wide Long Nested input output pivot_longer pivot_wider group_nest unnest ggplot
visualization map output ggsave
Enjoy!! KMT©