Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Tokyo.R #97 Data Visualization
Search
kilometer
March 19, 2022
Technology
1
320
Tokyo.R #97 Data Visualization
第97回Tokyo.Rの初心者セッションでトークした際のスライドです。
kilometer
March 19, 2022
Tweet
Share
More Decks by kilometer
See All by kilometer
TokyoR#111_ANOVA
kilometer
2
860
TokyoR109.pdf
kilometer
1
450
TokyoR#108_NestedDataHandling
kilometer
0
770
TokyoR#107_R_GeoData
kilometer
0
410
SappoRo.R_roundrobin
kilometer
0
130
TokyoR#104_DataProcessing
kilometer
1
680
TokyoR#103_DataProcessing
kilometer
0
870
TokyoR#102_RMarkdown
kilometer
1
630
TokyoR#101_RegressionAnalysis
kilometer
0
370
Other Decks in Technology
See All in Technology
I could be Wrong!! - Learning from Agile Experts
kawaguti
PRO
8
3.3k
コロプラのオンボーディングを採用から語りたい
colopl
5
940
AWSマルチアカウント統制環境のすゝめ / 20250115 Mitsutoshi Matsuo
shift_evolve
0
100
AWS Community Builderのススメ - みんなもCommunity Builderに応募しよう! -
smt7174
0
170
2025年のARグラスの潮流
kotauchisunsun
0
790
【JAWS-UG大阪 reInvent reCap LT大会 サンバが始まったら強制終了】“1分”で初めてのソロ参戦reInventを数字で振り返りながら反省する
ttelltte
0
130
完全自律型AIエージェントとAgentic Workflow〜ワークフロー構築という現実解
pharma_x_tech
0
320
RubyでKubernetesプログラミング
sat
PRO
4
150
Unsafe.BitCast のすゝめ。
nenonaninu
0
190
アジャイルチームが変化し続けるための組織文化とマネジメント・アプローチ / Agile management that enables ever-changing teams
kakehashi
3
3.3k
あなたの知らないクラフトビールの世界
miura55
0
120
Visual StudioとかIDE関連小ネタ話
kosmosebi
1
370
Featured
See All Featured
Building an army of robots
kneath
302
45k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.5k
Facilitating Awesome Meetings
lara
51
6.2k
Side Projects
sachag
452
42k
Site-Speed That Sticks
csswizardry
2
260
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
Code Review Best Practice
trishagee
65
17k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
The Language of Interfaces
destraynor
155
24k
GraphQLとの向き合い方2022年版
quramy
44
13k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Transcript
#97 @kilometer00 2022.03.19 BeginneR Session -- Data Visualization --
Who!? 誰だ?
Who!? 名前: 三村 @kilometer 職業: ポスドク (こうがくはくし) 専⾨: ⾏動神経科学(霊⻑類) 脳イメージング
医療システム⼯学 R歴: ~ 10年ぐらい 流⾏: むし社
宣伝!!(書籍の翻訳に参加しました。)
BeginneR Session
BeginneR
Beginne R Advance d Hoxo_m If I have seen further
it is by standing on the shoulders of Giants. -- Sir Isaac Newton, 1676
Before After BeginneR Session BeginneR BeginneR
"a" != "b" # is A in B? ブール演算⼦ Boolean
Algebra [1] TRUE 1 %in% 10:100 # is A in B? [1] FALSE
George Boole 1815 - 1864 A Class-Room Introduc2on to Logic
h7ps://niyamaklogic.wordpress.com/c ategory/laws-of-thoughts/ Mathema;cian Philosopher &
ブール演算⼦ Boolean Algebra A == B A != B George
Boole 1815 - 1864 A | B A & B A %in% B # equal to # not equal to # or # and # is A in B? wikipedia
Programing
Programing
Programing Write Run Read Think Write Run Read Think Communicate
Share
Text Image Information Intention Data decode encode Data analysis feedback
≠
Text Image First, A. Next, B. Then C. Finally D.
time Intention encode "Frozen" structure A B C D 8me value α β
σʔλ 情報のうち意思伝達・解釈・処理に 適した再利⽤可能なもの 国際電気標準会議(International Electrotechnical Commission, IEC)による定義
σʔλ 情報のうち意思伝達・解釈・処理に 適した再利⽤可能なもの ใ 実存を符号化した表象
σʔλ ใͷ͏ͪҙࢥୡɾղऍɾॲཧʹ దͨ͠࠶ར༻Մೳͳͷ ใ ࣮ଘΛූ߸Խͨ͠ද ࣮ଘ ؍ͷ༗ແʹΑΒͣଘࡏ͍ͯ͠Δ ͷͦͷͷ ࣸ૾ʢූ߸Խʣ
ࣸ૾ Ϧϯΰ ʢ࣮ଘʣ Ϧϯΰ ʢใʣ mapping
ࣸ૾ (mapping) 𝑓: 𝑋 → 𝑌 𝑋 𝑌 ͋Δใͷू߹ͷཁૉΛɺผͷใͷू߹ͷ ͨͩͭͷཁૉʹରԠ͚ͮΔϓϩηε
ใྔ ࣮ଘ ใ σʔλ Ϧϯΰ ූ߸Խ
ใྔ ࣮ଘ ใ σʔλ Ϧϯΰ ූ߸Խ ใྔͷଛࣦ
Ϧϯΰ ࣸ૾ ϑϧʔπ ৭ ը૾ ࣮ଘ ใ νϟωϧ mapping
channel
𝑋 𝑌 𝑦! 𝑥! 𝑦" 𝑥" 𝑋 𝑌 𝑥! 𝑥"
𝑦! 𝑦" σʔλՄࢹԽ ࣸ૾ mapping
𝑋 𝑌 𝑦! 𝑥! 𝑦" 𝑥" 𝑋 𝑌 𝑥! 𝑥"
𝑦! 𝑦" σʔλՄࢹԽ ࣸ૾ mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels ৹ඒతνϟωϧ
𝑋 𝑌 𝑦! 𝑥! 𝑦" 𝑥" 𝑋 𝑌 𝑥! 𝑥"
𝑦! 𝑦" σʔλՄࢹԽ ࣸ૾ mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels ৹ඒతνϟωϧ ggplot(data = my_data) + aes(x = X, y = Y)) + goem_point() HHQMPUʹΑΔ࡞ਤ
࣮ଘ ࣸ૾ʢ؍ʣ σʔλ ࣸ૾ʢσʔλՄࢹԽʣ άϥϑ 𝑋 𝑌 𝑦! 𝑥! 𝑦"
𝑥" 𝑋 𝑌 𝑥! 𝑥" 𝑦! 𝑦" EBUB mapping aesthetic channels ৹ඒతνϟωϧ σʔλՄࢹԽ
ॳΊͯͷHHQMPU library(tidyverse) dat <- data.frame(tag = rep(c("a", "b"), each =
2), X = c(1, 3, 5, 7), Y = c(3, 9, 4, 2)) ggplot() + geom_point(data = dat, mapping = aes(x = X, y = Y))
ॳΊͯͷHHQMPU
ॳΊͯͷHHQMPU library(tidyverse) dat <- data.frame(tag = rep(c("a", "b"), each =
2), X = c(1, 3, 5, 7), Y = c(3, 9, 4, 2)) ggplot() + geom_point(data = dat, mapping = aes(x = X, y = Y)) EBUBGSBNFͷࢦఆ BFT ؔͷதͰ৹ඒతཁૉͱͯ͠มͱνϟωϧͷରԠΛࢦఆ ඳը։࢝Λએݴ ه߸Ͱͭͳ͙ BFT ؔͷҾ໊ EBUͷม໊ άϥϑͷछྨʹ߹ΘͤͨHFPN@ ؔΛ༻
library(tidyverse) dat <- data.frame(tag = rep(c("a", "b"), each = 2),
X = c(1, 3, 5, 7), Y = c(3, 9, 4, 2)) ggplot() + geom_point(data = dat, mapping = aes(x = X, y = Y)) + geom_path(data = dat, mapping = aes(x = X, y = Y)) ॳΊ͔ͯΒ൪ͷHHQMPU
ॳΊ͔ͯΒ൪ͷHHQMPU
HHQMPUίʔυͷॻ͖ํͷ৭ʑ ggplot() + geom_point(data = dat, mapping = aes(x =
X, y = Y)) + geom_path(data = dat, mapping = aes(x = X, y = Y)) ggplot(data = dat, mapping = aes(x = X, y = Y)) + geom_point() + geom_path() ggplot(data = dat) + aes(x = X, y = Y) + geom_point() + geom_path() ڞ௨ͷࢦఆΛHHQMPU ؔͷதͰߦ͍ɺҎԼলུ͢Δ͜ͱ͕Մೳ NBQQJOHͷใ͕ॻ͔ΕͨBFT ؔΛHHQMPU ؔͷ֎ʹஔ͘͜ͱͰ͖Δ
HHQMPUίʔυͷॻ͖ํͷ৭ʑ ggplot() + geom_point(data = dat, mapping = aes(x =
X, y = Y, color = tag)) + geom_path(data = dat, mapping = aes(x = X, y = Y)) ggplot(data = dat) + aes(x = X, y = Y) + # 括り出すのは共通するものだけ geom_point(mapping = aes(color = tag)) + geom_path() ϙΠϯτͷ৭ͷNBQQJOHΛࢦఆ
HHQMPUίʔυͷॻ͖ํͷ৭ʑ ggplot(data = dat) + aes(x = X, y =
Y) + geom_point(aes(color = tag)) + geom_path() ggplot(data = dat) + aes(x = X, y = Y) + geom_path() + geom_point(aes(color = tag)) ͋ͱ͔Β ͰॏͶͨཁૉ͕લ໘ʹඳը͞ΕΔ
library(tidyverse) dat <- data.frame(tag = rep(c("a", "b"), each = 2),
X = c(1, 3, 5, 7), Y = c(3, 9, 4, 2)) g <- ggplot(data = dat) + aes(x = X, y = Y) + geom_path() + geom_point(mapping = aes(color = tag)) HHQMPUը૾ͷอଘ ggsave(filename = "fig/demo01.png", plot = g, width = 4, height = 3, dpi = 150)
library(tidyverse) dat <- data.frame(tag = rep(c("a", "b"), each = 2),
X = c(1, 3, 5, 7), Y = c(3, 9, 4, 2)) g <- ggplot(data = dat) + aes(x = X, y = Y) + geom_path() + geom_point(mapping = aes(color = tag)) HHQMPUը૾ͷอଘ ggsave(filename = "fig/demo01.png", plot = g, width = 4, height = 3, dpi = 150) αΠζσϑΥϧτͰΠϯν୯ҐͰࢦఆ
library(tidyverse) dat <- data.frame(tag = rep(c("a", "b"), each = 2),
X = c(1, 3, 5, 7), Y = c(3, 9, 4, 2)) g <- ggplot(data = dat) + aes(x = X, y = Y) + geom_path() + geom_point(mapping = aes(color = tag)) HHQMPUը૾ͷอଘ ggsave(filename = "fig/demo01.png", plot = g, width = 10, height = 7.5, dpi = 150, units = "cm") # "cm", "mm", "in"を指定可能
HFNP@ ؔ܈ DGIUUQTXXXSTUVEJPDPNSFTPVSDFTDIFBUTIFFUT
ෳͷܥྻΛඳը͢Δ > head(anscombe) x1 x2 x3 x4 y1 y2 y3
y4 1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 4 9 9 9 8 8.81 8.77 7.11 8.84 5 11 11 11 8 8.33 9.26 7.81 8.47 6 14 14 14 8 9.96 8.10 8.84 7.04 ggplot(data = anscombe) + geom_point(aes(x = x1, y = y1)) + geom_point(aes(x = x2, y = y2), color = "Red") + geom_point(aes(x = x3, y = y3), color = "Blue") + geom_point(aes(x = x4, y = y4), color = "Green") ͜Ε·ͰͷࣝͰؤுΔͱ͜͏ͳΔ
HHQMPUʹΑΔσʔλՄࢹԽ ࣮ଘ ࣸ૾ʢ؍ʣ σʔλ ࣸ૾ʢσʔλՄࢹԽʣ άϥϑ 𝑋 𝑌 𝑦! 𝑥!
𝑦" 𝑥" SBXEBUB 写像 aesthetic channels ৹ඒతνϟωϧ ՄࢹԽʹదͨ͠EBUBܗࣜ 変形 ਤͷͭͷ৹ඒతνϟωϧ͕ σʔλͷͭͷมʹରԠ͍ͯ͠Δ
> head(anscombe) x1 x2 x3 x4 y1 y2 y3 y4
1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 4 9 9 9 8 8.81 8.77 7.11 8.84 5 11 11 11 8 8.33 9.26 7.81 8.47 6 14 14 14 8 9.96 8.10 8.84 7.04 > head(anscombe_long) key x y 1 1 10 8.04 2 2 10 9.14 3 3 10 7.46 4 4 8 6.58 5 1 8 6.95 6 2 8 8.14 ggplot(data = anscombe_long) + aes(x = x, y = y, color = key) + geom_point() ৹ඒతνϟωϧ Y࣠ Z࣠ ৭ ʹରԠ͢ΔมʹͳΔΑ͏มܗ ݟ௨͠ྑ͘γϯϓϧʹՄࢹԽͰ͖Δ
> head(anscombe) x1 x2 x3 x4 y1 y2 y3 y4
1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 4 9 9 9 8 8.81 8.77 7.11 8.84 5 11 11 11 8 8.33 9.26 7.81 8.47 6 14 14 14 8 9.96 8.10 8.84 7.04 > head(anscombe_long) key x y 1 1 10 8.04 2 2 10 9.14 3 3 10 7.46 4 4 8 6.58 5 1 8 6.95 6 2 8 8.14 ৹ඒతνϟωϧ Y࣠ Z࣠ ৭ ʹରԠ͢ΔมʹͳΔΑ͏มܗ anscombe_long <- pivot_longer(data = anscombe, cols = everything(), names_to = c(".value", "key"), names_pattern = "(.)(.)") ԣσʔλ ॎσʔλ
ggplot(data = anscombe_long) + aes(x = x, y = y,
color = key) + geom_point() ggplot(data = anscombe_long) + aes(x = x, y = y, color = key) + geom_point() + facet_wrap(facets = . ~ key, nrow = 1) ਫ४ͰਤΛׂ͢Δ
Wide Long Nested input output pivot_longer pivot_wider group_nest unnest ggplot
visualization map output ggsave
Enjoy!! KMT©