Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【東北大学のリカレント教育紹介】 AWS と Jetson を使った「きのこの山」「たけのこの...
Search
Atsushi Koike
PRO
July 04, 2024
Technology
0
630
【東北大学のリカレント教育紹介】 AWS と Jetson を使った「きのこの山」「たけのこの里」リアルタイム分類システムの開発
東北大学のDX講座内で開発している画像分類システムについて紹介します
Atsushi Koike
PRO
July 04, 2024
Tweet
Share
More Decks by Atsushi Koike
See All by Atsushi Koike
【CDLE宮城】第1回勉強会:機械学習の説明性
koikezlemma
PRO
0
85
Other Decks in Technology
See All in Technology
How to achieve interoperable digital identity across Asian countries
fujie
0
120
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
11
78k
英語は話せません!それでも海外チームと信頼関係を作るため、対話を重ねた2ヶ月間のまなび
niioka_97
0
130
「AI駆動PO」を考えてみる - 作る速さから価値のスループットへ:検査・適応で未来を開発 / AI-driven product owner. scrummat2025
yosuke_nagai
4
630
生成AIを活用したZennの取り組み事例
ryosukeigarashi
0
210
空間を設計する力を考える / 20251004 Naoki Takahashi
shift_evolve
PRO
3
400
データエンジニアがこの先生きのこるには...?
10xinc
0
450
KMP の Swift export
kokihirokawa
0
340
Large Vision Language Modelを用いた 文書画像データ化作業自動化の検証、運用 / shibuya_AI
sansan_randd
0
110
自作LLM Native GORM Pluginで実現する AI Agentバックテスト基盤構築
po3rin
2
270
[2025-09-30] Databricks Genie を利用した分析基盤とデータモデリングの IVRy の現在地
wxyzzz
0
500
extension 現場で使えるXcodeショートカット一覧
ktombow
0
220
Featured
See All Featured
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
A designer walks into a library…
pauljervisheath
209
24k
The Language of Interfaces
destraynor
162
25k
Embracing the Ebb and Flow
colly
88
4.8k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
KATA
mclloyd
32
15k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
960
The Pragmatic Product Professional
lauravandoore
36
6.9k
Writing Fast Ruby
sferik
629
62k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
850
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Transcript
5PIPLV5FDI ʲ౦େֶͷϦΧϨϯτڭҭհʳ "84ͱ +FUTPOΛͬͨ ʮ͖ͷ͜ͷࢁʯʮ͚ͨͷ͜ͷཬʯ ϦΞϧλΠϜྨγεςϜͷ։ൃ ݄ ౦େֶେֶӃใՊֶݚڀՊ খ ರ
2 খರʢ͍͚͋ͭ͜͠ʣ l ౦େֶେֶӃใՊֶݚڀՊ ࣮ફతใڭҭਪਐࣨಛ।ڭतʢݚڀʣ l ࢈ֶ࿈ܞɼ%9ɾ"*ڭҭ୲ l ݱࡏͷઐਂֶशʢಛʹઆ໌Մೳ"*ʣ l
ࡢʰਤղਂֶशʱΛग़൛
3 %9ΠϯϑϧΤϯαཆߨ࠲ 㱺౦େֶͷࣾձਓ͚%9ߨ࠲ ຊߨ࠲Ͱڭ͍͑ͯΔ "*ʹΑΔը૾ྨͷ࣮शʹ͍ͭͯհ͢Δ
ຊηογϣϯͷϥʔχϯάΞτΧϜ ઋͰ%9ɾ"*ؔ࿈ͷਓࡐҭࢧԉ͕๛ʹ͋ Δ͜ͱΛѲ͍ͯ͠Δ "84Λ׆༻͢Δ͜ͱͰɼϦΞϧλΠϜը૾ྨ γεςϜ͕؆୯ʹ։ൃͰ͖Δ͜ͱΛѲ͍ͯ͠Δ 4
ઋʹ͓͚Δ%9ɾ"*ਓࡐҭ 5
ઋࢢ l ʮ"*3FBEZࢢɾઋʯͷ࣮ݱʹ͚༷ͨʑͳ ࢧԉ l ઋ95&$)ʢΫϩεςοΫʣ l (ݕఆɾ&ݕఆʢσΟʔϓϥʔχϯάࢿ֨ʣͷࢿ֨औಘࢧԉ 6 4&/%"*95&$)*//07"5*0/130+&$5
IUUQTMQUFDIQMBZKQTFOEBJYUFDI
ٶݝ l ٶݝاը෦࢈ۀσδλϧਪਐ՝ l ࢈ۀσδλϧத֩ਓࡐҭϓϩάϥϜ l .*4"ʢٶݝใαʔϏε࢈ۀڠձʣ l Ҭσδλϧਓࡐҭ ʢ"84͔Β$IBU(15·Ͱ༷ʑʣ
l ٶݝ࢈ۀٕज़૯߹ηϯλʔ l ͷৎ%9ϥϘʢͷͮ͘ΓݱͰͷ"*ɾ*P5׆༻ࢧԉʣ 7 ͷৎ%9ϥϘͰࠓհ͢Δߨ࠲ͷԠ༻ࣄྫΛలࣔ
%9ΠϯϑϧΤϯαཆߨ࠲ 8
%9ΠϯϑϧΤϯαཆߨ࠲ l ౦େֶͷࣾձਓ͚%9ߨ࠲ l ΦϯσϚϯυͷ࠲ֶ ࣮श l ࡢ্ཱͪ͛ʢແྉͰ࣮ࢪʣ l ࠓܭըதɼকདྷతʹ༗ྉԽ
9 修了者にはオープンバッジを授与! 1.プログラムの目的 地域企業においては、クラウド上でストレージ・計算資源を課題解決に向けて編成し、AIMDによるソリューションを導き 出せるIT+AIMD+コンサルテーション力=DXインフルエンサの育成が求められている。本プログラムにおいては、AIMDのリ テラシおよび応用基礎レベルの知識をオンデマンドやe-learningコンテンツで学び、セキュリティに適切に配慮してストレー ジおよびGPUなどのクラウド計算資源を編成してAIMDアルゴリズムの実装に取組む。また、Kaggle課題に個別に取組み、パ フォーマンスを「競い合う」と共に、異なる課題に取組むグループメンバー間での「教え合い」を促し、IT+AIMD+コンサ ルテーション力の実践能力を実質化する。最終ステージでは、実データを用いた課題解決PBLにクラウド資源をセキュアに編 成して取組み、実践的なIT+AIMD活用技術を身につける。以上により、オールラウンドなDXインフルエンサを養成する。修 了にあたってはオープンバッジを付与する。 2.プログラムの特徴 AIMD人材育成企業と連携して、参加登録および参加証(トークン)発行の自動化、オンデマンド、e-learningコンテンツ の学習プラットフォームへの統合化による学習進捗管理および修了認定の効率化と共有を実現する。また、実習、PBLにおい ては「競い合い」(コンペ)と併せてグループパフォーマンスを向上させる「教え合い」の工夫を評価して、各自の自主的な 学びを促進する。修了にあたってはオープンバッジを付与し、将来にわたる学びを動機づける。また、修了生のDXインフルエ ンサとしての活動をフォローアップし、教育プログラム開発に活かす。 競い合い&教え合い "*ɾཧɾσʔλαΠΤϯε %9ΠϯϑϧΤϯαཆߨ࠲ IUUQTEYJJTUPIPLVBDKQ
ຊհ͢Δ࣮श l +FUTPOͱ"84Λ༻͍ͨ"*γεςϜߏங࣮श l ର໘࣮शɿճʢ߹ܭ࣌ؒʣ l ֤ճɼ࣮ػΛ༻͍࣮ͨशΛߦ͏ʢ࣌ؒʣ l ظؒɿ݄͔Β݄·Ͱͷຖि༵ l
ॴɿ౦େֶ੨༿ࢁΩϟϯύεʢԕִडೖʣ l तۀ֓ཁ l +FUTPOʢΈࠐΈػثʣͱ"84ʢΫϥυαʔϏεʣ Λ׆༻ͯ͠ɼΈࠐΈγεςϜʹ"*ΛΈࠐΉํ๏Λ ࣮श͢Δ 10 %9ΠϯϑϧΤϯαཆߨ࠲4UBHF+FUTPOͱ"84Λ༻͍ͨ"*γεςϜߏங࣮श IUUQTEYJJTUPIPLVBDKQV@EJTQMBZQIQ JETUBHF@MJTU@
։ൃ͢ΔγεςϜ l ʮ͖ͷ͜ͷࢁʯͱʮ͚ͨͷ͜ͷཬʯΛϦΞϧλΠ Ϝྨ͠ɼ-$%σΟεϓϨΠ-&%Ͱදࣔ l ݩωλ"84CVJMEFSTGMBTIʢ"84͔ࣾΒڠྗ͋Γʣ 11 CVJMEFSTGMBTI ͚ͨͷ͜ͷཬ͕͖ͳ (͘ΜͷͨΊʹɺ͖ͷ͜ͷࢁΛผ͢ΔஔΛ࡞ͬͯ͋͛ͨɻ
IUUQTBXTBNB[PODPNKQCVJMEFSTGMBTILJOPLPUBLFOPLPNPEFMDSFBUJPO +FUTPO Χϝϥ
+FUTPO/BOP%FWFMPQFS,JU l (16Λࡌͨ͠খܕίϯϐϡʔλ l σΟʔϓϥʔχϯάͷਪΛߴʹܭࢉՄೳ l (1*0 *$ͷϋʔυΣΞΠϯλϑΣʔεࡌ l *P5ϓϩτλΠϓ։ൃʹ͍͍ͯΔ
12 IUUQTEFWFMPQFSOWJEJBDPNFNCFEEFEKFUTPOOBOPEFWFMPQFSLJU
։ൃ͢Δػೳ̍ l ը૾ྨ 13
։ൃ͢Δػೳ̎ l ମݕग़ 14
ֶम༰ l ϋʔυΣΞ੍ޚ l Ϋϥυ׆༻ʢ"84ʣ l 4ʢετϨʔδʣ l $MPVE'PSNBUJPOʢΫϥυϦιʔεͷࣗಈੜʣ l
4BHF.BLFSʢϥϕϦϯάɾਂֶशϓϩάϥϛϯάʣ l ਂֶशʢը૾ྨɾମݕग़ʣ 15 (ݕఆΛ࣮ʹ׆͔͍ͨ͠ΤϯδχΞʹΦεεϝʂ
"84Λ׆༻͢Δར l 4Λ׆༻͢Δ͜ͱͰϞσϧֶशʹඞཁͳσʔλ Λ؆୯ʹཧͰ͖Δ l ίϚϯυϓϩάϥϜ͔Β༰қʹσʔλૹ৴Ͱ͖Δ l ඞཁͳ͚࣌ͩ(16ϚγϯΛ༻Ͱ͖Δ l ߴՁͳ(16Ϛγϯ͕ඞཁͳͷϞσϧֶशͷ࣌ͷΈ
l ϥϕϦϯάπʔϧ͕๛ 16
17 ࣮शͷσϞΛߦ͍·͢ʂ దʹলུ͠ͳ͕Β ը૾ྨγεςϜΛ࡞Γ·͢ ʢྉཧ൪෩ʣ ֶश༻ը૾ͷࡱӨͱΞοϓϩʔυʢ+FUTPOʣ ը૾ྨϞσϧͷֶशʢ"844BHF.BLFSʣ
ϞσϧΛ+FUTPOͰಡΈࠐΈ
ֶश༻ը૾ͷࡱӨͱΞοϓϩʔυʢ+FUTPOʣ 18 Χϝϥ͔Βը૾ಡΈࠐΈ DΛԡ͢ͱը૾อଘ ը૾ࡱӨϓϩάϥϜ
ֶश༻ը૾ͷࡱӨͱΞοϓϩʔυʢ+FUTPOʣ 19 ը૾֨ೲϑΥϧμͷߏ ϑΥϧμͷ"84ʢ4ʣͷΞοϓϩʔυ
ը૾ྨϞσϧͷֶशʢ"844BHF.BLFSʣ 20 ϞσϧΛֶश͠ɼϞσϧΛ4ʹΞοϓϩʔυ͢Δ Ϟσϧ ίϯύΠϧ Ϟσϧֶश Ϟσϧ Ξοϓϩʔυ σʔλऔಘ
ϞσϧΛ+FUTPOͰಡΈࠐΈ 21 ϞσϧಡΈࠐΈ ը૾ྨ ϥϕϧදࣔ
22 ྨ݁Ռ