Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TokyoR#119 bignners session2 Visualization
Search
yu_sekiya
September 19, 2025
Programming
0
150
TokyoR#119 bignners session2 Visualization
TokyoR#119の初心者セッションの資料です。
yu_sekiya
September 19, 2025
Tweet
Share
More Decks by yu_sekiya
See All by yu_sekiya
TokyoR#119 rvestでhtml_liveをさわってみた話
kotatyamtema
0
23
Shinyのすすめ - Introduction to shiny -
kotatyamtema
0
150
TokyoR116_BeginnersSession1_環境構築
kotatyamtema
0
220
TokyoR#114 shiny+DT超(ザックリ)入門
kotatyamtema
0
92
TokyoR#113 bignners session2 Visualization
kotatyamtema
0
110
TokyoR #112 Beginners' Session2 data handing
kotatyamtema
0
120
TokyoR #111 Beginners' Session1 data handing
kotatyamtema
0
86
TokyoR#95 bignners session2 Visualization
kotatyamtema
0
62
TokyoR#102 bignners session2
kotatyamtema
0
76
Other Decks in Programming
See All in Programming
競馬で学ぶ機械学習の基本と実践 / Machine Learning with Horse Racing
shoheimitani
2
2.5k
乱雑なコードの整理から学ぶ設計の初歩
masuda220
PRO
25
7.8k
AIのバカさ加減に怒る前にやっておくこと
blueeventhorizon
0
160
『HOWはWHY WHATで判断せよ』 〜『ドメイン駆動設計をはじめよう』の読了報告と、本質への探求〜
panda728
PRO
3
1k
ネストしたdata classの面倒な更新にさようなら!Lensを作って理解するArrowのOpticsの世界
shiita0903
1
300
Private APIの呼び出し方
kishikawakatsumi
2
830
複数チーム並行開発下でのコード移行アプローチ ~手動 Codemod から「生成AI 活用」への進化
andpad
0
140
Vueで学ぶデータ構造入門 リンクリストとキューでリアクティビティを捉える / Vue Data Structures: Linked Lists and Queues for Reactivity
konkarin
1
170
AI POSにおけるLLM Observability基盤の導入 ― サイバーエージェントDXインターン成果報告
hekuchan
0
480
AI時代に必須!状況言語化スキル / ai-context-verbalization
minodriven
3
380
Claude Code on the Web を超える!? Codex Cloud の実践テク5選
sunagaku
0
480
flutter_kaigi_2025.pdf
kyoheig3
1
210
Featured
See All Featured
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.7k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
118
20k
The Language of Interfaces
destraynor
162
25k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.3k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
GitHub's CSS Performance
jonrohan
1032
470k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
BBQ
matthewcrist
89
9.9k
Context Engineering - Making Every Token Count
addyosmani
9
380
Transcript
ॳ৺ऀηογϣϯ EBUBWJTVBMJ[BUJPOೖ 5PLZP3 !LPUBUZBNUFNB
ࣗݾհ 5XJUUFS*%!LPUBUZBNUFNB େֶͰͷઐߦಈੜଶֶ ཱҊdั֫d࣮ݧdੳ·ͰϫϯΦϖ ࠓ·Ͱ٬ઌ΅ͬͪੳˠΞύϨϧ௨ൢձࣾ ݱࡏҩྍݕࠪձࣾ 3ྺա͗ͨͣʁӬԕͷॳ৺ऀ ۙگݱͱTIJOZBQQ৬ਓ ͓ۚେࣄɺ࣌ؒͬͱେࣄ ɹɹ
త ͳͥσʔλͷՄࢹԽ͕ඞཁͳͷ͔ HHQMPUΛͬͯجຊతͳ࡞ਤ͕ Ͱ͖ΔΑ͏ʹͳΔ
࣍ ʮσʔλΛՄࢹԽ͢Δʯͱ ͳͥՄࢹԽ͕ඞཁͳͷ͔ 3Ͱ࡞ਤHHQMPUೖ దͳ৭ͷબ
͞·͟·ͳάϥϑͱ͍ํ
.&/6 ʮσʔλΛՄࢹԽ͢Δʯͱ ͳͥՄࢹԽ͕ඞཁͳͷ͔ ཁͷམͱ݀͠ దͳछྨͷબ 3Ͱ࡞ਤHHQMPUೖ ༻σʔλʢQFOHVJOTʣ
HHQMPUͷ࡞ਤ֓೦ جຊͷॻ͖ํ దͳ৭ͷબ ΧϥʔϢχόʔαϧσβΠϯ ͞·͟·ͳάϥϑͱ͍ํ άϥϑͷछྨͱ͍ํ ओͳάϥϑͷαϯϓϧ ώετάϥϜ άϥϑ ശͻ͛ਤ ࢄਤ ંΕઢάϥϑ
.&/6 ʮσʔλΛՄࢹԽ͢Δʯͱ ͳͥՄࢹԽ͕ඞཁͳͷ͔ ཁͷམͱ݀͠ దͳछྨͷબ 3Ͱ࡞ਤHHQMPUೖ ༻σʔλʢQFOHVJOTʣ
HHQMPUͷ࡞ਤ֓೦ جຊͷॻ͖ํ దͳ৭ͷબ ΧϥʔϢχόʔαϧσβΠϯ ͞·͟·ͳάϥϑͱ͍ํ άϥϑͷछྨͱ͍ํ ओͳάϥϑͷαϯϓϧ ώετάϥϜ άϥϑ ശͻ͛ਤ ࢄਤ ંΕઢάϥϑ
ʮσʔλΛՄࢹԽ͢Δʯͱ σʔλͷཧղͷ࠷ॳͷҰา ཁͰݟಀͯ͠͠·͏ҟৗͷݕ ݴޠԽ͠ʹ͍͘ใͷڞ༗ ্࢘ҙࢥܾఆͷޮՌతͳϓϨθϯࢿྉ ใྔ͕ଟ͍ͷͰޮՌతʹ͓͏
.&/6 ʮσʔλΛՄࢹԽ͢Δʯͱ ͳͥՄࢹԽ͕ඞཁͳͷ͔ ཁͷམͱ݀͠ దͳछྨͷબ 3Ͱ࡞ਤHHQMPUೖ ༻σʔλʢQFOHVJOTʣ
HHQMPUͷ࡞ਤ֓೦ جຊͷॻ͖ํ ͞·͟·ͳάϥϑͱ͍ํ άϥϑͷछྨͱ͍ํ ͞·͟·ͳάϥϑͱ͍ํ άϥϑͷछྨͱ͍ํ ओͳάϥϑͷαϯϓϧ ώετάϥϜ άϥϑ ശͻ͛ਤ ࢄਤ ંΕઢάϥϑ
ͳͥՄࢹԽ͕ඞཁͳͷ͔ ཁʹམͱ͕݀͋͠Δ ฏۉඪ४ภࠩͰσʔλͷΛදݱ͖͠Εͳ͍
ͳͥՄࢹԽ͕ඞཁͳͷ͔ ཁʹམͱ͕݀͋͠Δ ฏۉඪ४ภࠩͰσʔλͷΛදݱ͖͠Εͳ͍ IUUQTWJTVBMJ[JOHKQUIFEBUBTBVSVTEP[FO
ͳͥՄࢹԽ͕ඞཁͳͷ͔ ౷ܭʹམͱ͕݀͋͠Δ γϯϓιϯͷύϥυοΫεʢ4JNQTPOTQBSBEPYʣ ˠσʔλશମͷ૬ؔͱάϧʔϓ͝ͱͷ૬ؔҰக͠ͳ͍͜ͱ͕͋Δ
ͳͥՄࢹԽ͕ඞཁͳͷ͔ దͳछྨͷਤͷબ͕ॏཁ ෆదͳਤΛ͏ͱ͔Γʹ͍͚ͩ͘Ͱͳ͘ ҹૢ࡞ϛεϦʔσΟϯάΛট͘ ໓فئ%ԁάϥϑ
্खʹՄࢹԽͯ͠ ΑΓਂ͍σʔλͷ ཧղΛ
.&/6 ʮσʔλΛՄࢹԽ͢Δʯͱ ͳͥՄࢹԽ͕ඞཁͳͷ͔ ཁͷམͱ݀͠ దͳछྨͷબ 3Ͱ࡞ਤHHQMPUೖ ༻σʔλʢQFOHVJOTʣ
HHQMPUͷ࡞ਤ֓೦ جຊͷॻ͖ํ దͳ৭ͷબ ΧϥʔϢχόʔαϧσβΠϯ ͞·͟·ͳάϥϑͱ͍ํ άϥϑͷछྨͱ͍ํ ओͳάϥϑͷαϯϓϧ ώετάϥϜ άϥϑ ശͻ͛ਤ ࢄਤ ંΕઢάϥϑ
ࠓճ༻͢ΔσʔλQBMNFSQFOHVJOTύοέʔδʹೖ͍ͬͯΔ lQFOHVJOTzσʔλ ˠࣄલʹܽଌΛআ֎ ˠඞཁʹԠͯ͡ཁΛࢉग़ IUUQTBMMJTPOIPSTUHJUIVCJPQBMNFSQFOHVJOT ༻σʔλ
HHQMPUͷ࡞ਤ֓೦ HHQMPUͱ UJEZWFSTͷதͰ༻ҙ͞Ε͍ͯΔ࡞ਤ༻QBDLBHF QIPUPTIPQ*MMVTUSBUPSͷΑ͏ʹ ϨΠϠʔΛॏͶ͍ͯ͘ΠϝʔδͰ࡞ਤ HHQMPU HFPN@999
TDBMF@ @
جຊͷॻ͖ํ ؔͷؒz zͰͭͳ͙ QMPUHHQMPU EBUBQFOHVJO@QMPUEBUB BFT YCPEZ@NBTT@H Z
fl JQQFS@MFOHUI@NN HFPN@QPJOU BFT DPMPVSTQFDJFT TIBQFTFY อଘํ๏ HHTBWF QMPUQMPU fi MFlQMPUQOHz VOJUTlNNz XJEUI IFJHIU EQJ
HHQMPUͷϨΠϠʔͷ࣮ྫ جຊͷॻ͖ํ
جຊͷॻ͖ํ
جຊͷॻ͖ํ
جຊͷॻ͖ํ
جຊͷॻ͖ํ
.&/6 ʮσʔλΛՄࢹԽ͢Δʯͱ ͳͥՄࢹԽ͕ඞཁͳͷ͔ ཁͷམͱ݀͠ దͳछྨͷબ 3Ͱ࡞ਤHHQMPUೖ ༻σʔλʢQFOHVJOTʣ
HHQMPUͷ࡞ਤ֓೦ جຊͷॻ͖ํ దͳ৭ͷબ ΧϥʔϢχόʔαϧσβΠϯ ͞·͟·ͳάϥϑͱ͍ํ άϥϑͷछྨͱ͍ํ ओͳάϥϑͷαϯϓϧ ώετάϥϜ άϥϑ ശͻ͛ਤ ࢄਤ ંΕઢάϥϑ
దͳ৭ͷબ ώτͷࢹ֮ʹάϥσʔγϣϯ͕͋Δ ˠͳΔ͘୭ʹͰผ͍͢͠৭ܗΛબ͢Δ ΧϥʔϢχόʔαϧσβΠϯʹྀͨ͠ΧϥʔύϨοτΛ͏ 3$PMPS#SFXFSΛͬͨྫ EJTQMBZCSFXFSBMM DPMPSCMJOE'SJFOEMZ536&
.&/6 ʮσʔλΛՄࢹԽ͢Δʯͱ ͳͥՄࢹԽ͕ඞཁͳͷ͔ ཁͷམͱ݀͠ దͳछྨͷબ 3Ͱ࡞ਤHHQMPUೖ ༻σʔλʢQFOHVJOTʣ
HHQMPUͷ࡞ਤ֓೦ جຊͷॻ͖ํ దͳ৭ͷબ ΧϥʔϢχόʔαϧσβΠϯ ͞·͟·ͳάϥϑͱ͍ํ άϥϑͷछྨͱ͍ํ ओͳάϥϑͷαϯϓϧ ώετάϥϜ άϥϑ ശͻ͛ਤ ࢄਤ ંΕઢάϥϑ
άϥϑͷछྨͱ͍ํ
ओͳάϥϑͷαϯϓϧ ώετάϥϜ QFOHVJOT@IJTUHHQMPU EBUBQFOHVJO@QMPUEBUB BFT YCPEZ@NBTT@H fi MMTQFDJFT
HFPN@IJTUPHSBN QPTJUJPOJEFOUJUZ BMQIB CJOXJEUI QMPU QFOHVJOT@IJTU
ओͳάϥϑͷαϯϓϧ άϥϑ QFOHVJO@CBSHHQMPU EBUBQFOHVJO@QMPU BFT YTQFDJFT ZNFBO fi
MMTFY HFPN@CBS TUBUJEFOUJUZ QPTJUJPOEPEHF HFPN@FSSPSCBS BFT ZNJONFBOTE ZNBYNFBO TE QPTJUJPOQPTJUJPO@EPEHF XJEUI XJEUI QMPU QFOHVJO@CBS
ओͳάϥϑͷαϯϓϧ ശͻ͛ਤ QFOHVJO@CPYQMPUHHQMPU EBUBQFOHVJO@QMPUEBUB BFT YTQFDJFT ZCPEZ@NBTT@H fi
MMTFY HFPN@CPYQMPU QPTJUJPOEPEHF QMPU QFOHVJO@CPYQMPU
ओͳάϥϑͷαϯϓϧ ࢄਤ QFOHVJO@QPJOUHHQMPU EBUBQFOHVJO@QMPUEBUB BFT YCPEZ@NBTT@H Z fl JQQFS@MFOHUI@NN
HFPN@QPJOU BFT DPMPSTQFDJFT TIBQFTFY QMPU QFOHVJO@QPJOU
ओͳάϥϑͷαϯϓϧ ંΕઢάϥϑ QFOHVJO@MJOFHHQMPU EBUBQFOHVJO@QMPU BFT YZFBS ZNFBO
HFPN@MJOF BFT DPMPVSTQFDJFT MJOFUZQFTFY HFPN@FSSPSCBS BFT ZNJONFBOTE ZNBYNFBO TE ɹɹɹɹɹDPMPVSTQFDJFT XJEUI QMPU QFOHVJO@MJOF
·ͱΊ w ՄࢹԽ͢Δ͜ͱͰཁ͚ͩͰ͔Βͳ͍͜ͱ ͕ݟ͑Δ w ؒҧͬͨํ๏ͰͷՄࢹԽ༗ w HHQMPUύοέʔδΛ͏ͱ؆୯ʹ৭ʑͳ࡞ਤ͕ Ͱ͖Δ ͍͖ͳΓػցֶशͰͳ͘
࠷ॳʹՄࢹԽ͠Α͏
ࢀߟࢿྉ w HHQMPUDIFBUTIFFU IUUQTSBXHJUIVCVTFSDPOUFOUDPNSTUVEJPDIFBUTIFFUT NBJOEBUBWJTVBMJ[BUJPOQEG ɾHHQMPUʹΑΔՄࢹԽೖ IUUQTLB[VUBOHJUIVCJPGVLVPLB3JOUSP@HHQMPUIUNM ɾ3ͷ࡞ਤʹ͓͚Δϕετͳ৭ͷબͼํ IUUQTZPLB[BLJIBUFOBCMPHDPNFOUSZ
ɾσʔλՄࢹԽͷجຊ͕શ෦͔Δຊ IUUQTXXXTIPFJTIBDPKQCPPLEFUBJM