Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TokyoR#95 bignners session2 Visualization
Search
yu_sekiya
January 28, 2024
Programming
0
62
TokyoR#95 bignners session2 Visualization
TokyoR#95初心者セッション2の資料
yu_sekiya
January 28, 2024
Tweet
Share
More Decks by yu_sekiya
See All by yu_sekiya
TokyoR#119 rvestでhtml_liveをさわってみた話
kotatyamtema
0
29
TokyoR#119 bignners session2 Visualization
kotatyamtema
0
190
Shinyのすすめ - Introduction to shiny -
kotatyamtema
0
160
TokyoR116_BeginnersSession1_環境構築
kotatyamtema
0
230
TokyoR#114 shiny+DT超(ザックリ)入門
kotatyamtema
0
92
TokyoR#113 bignners session2 Visualization
kotatyamtema
0
120
TokyoR #112 Beginners' Session2 data handing
kotatyamtema
0
120
TokyoR #111 Beginners' Session1 data handing
kotatyamtema
0
87
TokyoR#102 bignners session2
kotatyamtema
0
83
Other Decks in Programming
See All in Programming
Giselleで作るAI QAアシスタント 〜 Pull Requestレビューに継続的QAを
codenote
0
300
マスタデータ問題、マイクロサービスでどう解くか
kts
0
140
メルカリのリーダビリティチームが取り組む、AI時代のスケーラブルな品質文化
cloverrose
2
390
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
160
「コードは上から下へ読むのが一番」と思った時に、思い出してほしい話
panda728
PRO
39
26k
gunshi
kazupon
1
120
AtCoder Conference 2025
shindannin
0
720
Graviton と Nitro と私
maroon1st
0
140
20251212 AI 時代的 Legacy Code 營救術 2025 WebConf
mouson
0
220
LLMで複雑な検索条件アセットから脱却する!! 生成的検索インタフェースの設計論
po3rin
4
990
愛される翻訳の秘訣
kishikawakatsumi
3
350
[AtCoder Conference 2025] LLMを使った業務AHCの上⼿な解き⽅
terryu16
6
840
Featured
See All Featured
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
98
Building Flexible Design Systems
yeseniaperezcruz
330
39k
How to Ace a Technical Interview
jacobian
281
24k
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
120
エンジニアに許された特別な時間の終わり
watany
106
220k
Skip the Path - Find Your Career Trail
mkilby
0
27
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
240
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
120
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
21
How Software Deployment tools have changed in the past 20 years
geshan
0
30k
Transcript
ॳ৺ऀηογϣϯ 1MPU7JTVBMJ[BUJPO 5PLZP3 !LPUBUZBNUFNB
ࣗݾհ 5XJUUFS*%!LPUBUZBNUFNB େֶͰͷઐߦಈੜଶֶ ཱҊdั֫d࣮ݧdੳ·ͰϫϯΦϖ ࠓ·Ͱ٬ઌ΅ͬͪੳˠΞύϨϧ௨ൢձࣾ ݱࡏҩྍݕࠪձࣾ 3ྺա͔͗ͨʁӬԕͷॳ৺ऀ ۙگͳΜ͔ͪΐͬͱ͍Ζ͍ΖมԽ͕͠ΜͲ͍ ɹɹࠓ͜ͷࠒɻ ࣗ༝ͱ͕࣌ؒཉ͍͠ɺࣗ༝ͱ࣌ؒ
త ͳͥσʔλͷՄࢹԽ͕ඞཁͳͷ͔ HHQMPUΛͬͯجຊతͳ࡞ਤ͕ Ͱ͖ΔΑ͏ʹͳΔ
࣍ ʮσʔλΛՄࢹԽ͢Δʯͱ ͳͥՄࢹԽ͕ඞཁͳͷ͔ 3Ͱ࡞ਤHHQMPUೖ ͞·͟·ͳάϥϑͱ͍ํ
.&/6 ʮσʔλΛՄࢹԽ͢Δʯͱ ͳͥՄࢹԽ͕ඞཁͳͷ͔ ཁͷམͱ݀͠ దͳछྨͷબ 3Ͱ࡞ਤHHQMPUೖ ༻σʔλʢQFOHVJOTʣ
HHQMPUͷ࡞ਤ֓೦ جຊͷॻ͖ํ ͞·͟·ͳάϥϑͱ͍ํ άϥϑͷछྨͱ͍ํ ओͳάϥϑͷαϯϓϧ ώετάϥϜ άϥϑ ശͻ͛ਤ ࢄਤ ંΕઢάϥϑ
.&/6 ʮσʔλΛՄࢹԽ͢Δʯͱ ͳͥՄࢹԽ͕ඞཁͳͷ͔ ཁͷམͱ݀͠ దͳछྨͷબ 3Ͱ࡞ਤHHQMPUೖ ༻σʔλʢQFOHVJOTʣ
HHQMPUͷ࡞ਤ֓೦ جຊͷॻ͖ํ ͞·͟·ͳάϥϑͱ͍ํ άϥϑͷछྨͱ͍ํ ओͳάϥϑͷαϯϓϧ ώετάϥϜ άϥϑ ശͻ͛ਤ ࢄਤ ંΕઢάϥϑ
ʮσʔλΛՄࢹԽ͢Δʯͱ σʔλͷཧղͷ࠷ॳͷҰา ཁͰݟಀͯ͠͠·͏ҟৗͷݕ ݴޠԽ͠ʹ͍͘ใͷڞ༗ ্࢘ҙࢥܾఆͷޮՌతͳϓϨθϯࢿྉ ใྔ͕ଟ͍ͷͰޮՌతʹ͓͏
.&/6 ʮσʔλΛՄࢹԽ͢Δʯͱ ͳͥՄࢹԽ͕ඞཁͳͷ͔ ཁͷམͱ݀͠ దͳछྨͷબ 3Ͱ࡞ਤHHQMPUೖ ༻σʔλʢQFOHVJOTʣ
HHQMPUͷ࡞ਤ֓೦ جຊͷॻ͖ํ ͞·͟·ͳάϥϑͱ͍ํ άϥϑͷछྨͱ͍ํ ओͳάϥϑͷαϯϓϧ ώετάϥϜ άϥϑ ശͻ͛ਤ ࢄਤ ંΕઢάϥϑ
ͳͥՄࢹԽ͕ඞཁͳͷ͔ ཁʹམͱ͕݀͋͠Δ ฏۉඪ४ภࠩͰσʔλͷΛදݱ͖͠Εͳ͍ ཁʢฏۉͱඪ४ภࠩʣಉ͡
ͳͥՄࢹԽ͕ඞཁͳͷ͔ ཁʹམͱ͕݀͋͠Δ ฏۉඪ४ภࠩͰσʔλͷΛදݱ͖͠Εͳ͍ શ͘ҧ͏ͷσʔλ
ͳͥՄࢹԽ͕ඞཁͳͷ͔ దͳछྨͷਤͷબ͕ॏཁ ෆదͳਤΛ͏ͱ͔Γʹ͍͚ͩ͘Ͱͳ͘ ҹૢ࡞ϛεϦʔσΟϯάΛট͘ ໓فئ%ԁάϥϑ
্खʹՄࢹԽͯ͠ ΑΓਂ͍σʔλͷ ཧղΛ
.&/6 ʮσʔλΛՄࢹԽ͢Δʯͱ ͳͥՄࢹԽ͕ඞཁͳͷ͔ ཁͷམͱ݀͠ దͳछྨͷબ 3Ͱ࡞ਤHHQMPUೖ ༻σʔλʢQFOHVJOTʣ
HHQMPUͷ࡞ਤ֓೦ جຊͷॻ͖ํ ͞·͟·ͳάϥϑͱ͍ํ άϥϑͷछྨͱ͍ํ ओͳάϥϑͷαϯϓϧ ώετάϥϜ άϥϑ ശͻ͛ਤ ࢄਤ ંΕઢάϥϑ
ࠓճ༻͢ΔσʔλQBMNFSQFOHVJOTύοέʔδʹೖ͍ͬͯΔ lQFOHVJOTzσʔλ ˠࣄલʹܽଌΛআ֎ ˠඞཁʹԠͯ͡ཁΛࢉग़ IUUQTBMMJTPOIPSTUHJUIVCJPQBMNFSQFOHVJOT ༻σʔλ
HHQMPUͷ࡞ਤ֓೦ HHQMPUͱ UJEZWFSTͷதͰ༻ҙ͞Ε͍ͯΔ࡞ਤ༻QBDLBHF QIPUPTIPQ*MMVTUSBUPSͷΑ͏ʹ ϨΠϠʔΛॏͶ͍ͯ͘ΠϝʔδͰ࡞ਤ HHQMPU HFPN@999
TDBMF@ @
جຊͷॻ͖ํ ؔͷؒz zͰͭͳ͙ QMPUHHQMPU EBUBQFOHVJO@QMPUEBUB BFT YCPEZ@NBTT@H ZqJQQFS@MFOHUI@NN
HFPN@QPJOU BFT DPMPVSTQFDJFT TIBQFTFY อଘํ๏ HHTBWF QMPUQMPU pMFlQMPUQOHz VOJUTlNNz XJEUI IFJHIU EQJ
.&/6 ʮσʔλΛՄࢹԽ͢Δʯͱ ͳͥՄࢹԽ͕ඞཁͳͷ͔ ཁͷམͱ݀͠ దͳछྨͷબ 3Ͱ࡞ਤHHQMPUೖ ༻σʔλʢQFOHVJOTʣ
HHQMPUͷ࡞ਤ֓೦ جຊͷॻ͖ํ ͞·͟·ͳάϥϑͱ͍ํ άϥϑͷछྨͱ͍ํ ओͳάϥϑͷαϯϓϧ ώετάϥϜ άϥϑ ശͻ͛ਤ ࢄਤ ંΕઢάϥϑ
άϥϑͷछྨͱ͍ํ
ओͳάϥϑͷαϯϓϧ ώετάϥϜ QFOHVJOT@IJTUHHQMPU EBUBQFOHVJO@QMPUEBUB BFT YCPEZ@NBTT@H pMMTQFDJFT
HFPN@IJTUPHSBN QPTJUJPOJEFOUJUZ BMQIB CJOXJEUI QMPU QFOHVJOT@IJTU
ओͳάϥϑͷαϯϓϧ άϥϑ QFOHVJO@CBSHHQMPU EBUBQFOHVJO@QMPU BFT YTQFDJFT ZNFBO pMMTFY
HFPN@CBS TUBUJEFOUJUZ QPTJUJPOEPEHF HFPN@FSSPSCBS BFT ZNJONFBOTE ZNBYNFBO TE QPTJUJPOQPTJUJPO@EPEHF XJEUI XJEUI QMPU QFOHVJO@CBS
ओͳάϥϑͷαϯϓϧ ശͻ͛ਤ QFOHVJO@CPYQMPUHHQMPU EBUBQFOHVJO@QMPUEBUB BFT YTQFDJFT ZCPEZ@NBTT@H pMMTFY
HFPN@CPYQMPU QPTJUJPOEPEHF QMPU QFOHVJO@CPYQMPU
ओͳάϥϑͷαϯϓϧ ࢄਤ QFOHVJO@QPJOUHHQMPU EBUBQFOHVJO@QMPUEBUB BFT YCPEZ@NBTT@H ZqJQQFS@MFOHUI@NN
HFPN@QPJOU BFT DPMPSTQFDJFT TIBQFTFY QMPU QFOHVJO@QPJOU
ओͳάϥϑͷαϯϓϧ ંΕઢάϥϑ QFOHVJO@MJOFHHQMPU EBUBQFOHVJO@QMPU BFT YZFBS ZNFBO
HFPN@MJOF BFT DPMPVSTQFDJFT MJOFUZQFTFY HFPN@FSSPSCBS BFT ZNJONFBOTE ZNBYNFBO TE ɹɹɹɹɹDPMPVSTQFDJFT XJEUI QMPU QFOHVJO@MJOF
·ͱΊ w ՄࢹԽ͢Δ͜ͱͰཁ͚ͩͰ͔Βͳ͍͜ͱ ͕ݟ͑Δ w ؒҧͬͨํ๏ͰͷՄࢹԽ༗ w HHQMPUύοέʔδΛ͏ͱ؆୯ʹ৭ʑͳ࡞ਤ͕ Ͱ͖Δ ͍͖ͳΓػցֶशͰͳ͘
࠷ॳʹՄࢹԽ͠Α͏
ࢀߟࢿྉ w HHQMPUDIFBUTIFFU IUUQTSBXHJUIVCVTFSDPOUFOUDPN STUVEJPDIFBUTIFFUTNBJOEBUB WJTVBMJ[BUJPOQEG ɾHHQMPUʹΑΔՄࢹԽೖ IUUQTLB[VUBOHJUIVCJPGVLVPLB3 JOUSP@HHQMPUIUNM
&/+0: