Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R を用いた分析(補講) (2) — 人工データの生成 / Analysis using R ...
Search
Kenji Saito
PRO
November 30, 2024
Technology
0
64
R を用いた分析(補講) (2) — 人工データの生成 / Analysis using R (supplementary) (2) - Generating artificial data
早稲田大学大学院経営管理研究科「企業データ分析」2024 冬のオンデマンド教材 第12回で使用したスライドです。
Kenji Saito
PRO
November 30, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
ウェブサービスデザイン 2 / Web Service Design 2
ks91
PRO
0
7
Learning to Govern the Orbital Commons: A Serious Game on Incentivizing Debris Removal
ks91
PRO
0
3
FinTech 13-14 : FinTech Ideathon and Poster
ks91
PRO
0
90
講師自己紹介 / Lecturer Self-Introduction
ks91
PRO
0
18
講師研究紹介 / Lecturer Research Profile
ks91
PRO
0
12
NPO とは何か (を考えるワールドカフェ) / What is an NPO? (A World Café for Reflection)
ks91
PRO
0
70
FinTech 11-12 : Cyber-Physical Society and Future of Finance
ks91
PRO
0
67
AI 前提社会のキャッチ=22 (または私は如何にして民主主義、文書主義、人道的活動...) / Catch-22 in an AI-Premised Society (or How I Came to Democracy, Documentation, Humanitarian Activities...)
ks91
PRO
0
10
ウェブサービスデザイン 1 / Web Service Design 1
ks91
PRO
0
9
Other Decks in Technology
See All in Technology
Dify on AWS の選択肢
ysekiy
0
110
AI エージェントを評価するための温故知新と Spec Driven Evaluation
icoxfog417
PRO
2
910
AI駆動開発を実現するためのアーキテクチャと取り組み
baseballyama
17
14k
GitHub を組織的に使いこなすために ソニーが実践した全社展開のプラクティス
sony
6
4.1k
確実に伝えるHealth通知 〜半自動システムでほどよく漏れなく / JAWS-UG 神戸 #9 神戸へようこそ!LT会
genda
0
150
DDD x Microservice Architecture : Findy Architecture Conf 2025
syobochim
13
5.9k
Building AI Applications with Java, LLMs, and Spring AI
thomasvitale
1
260
SRE視点で振り返るメルカリのアーキテクチャ変遷と普遍的な考え
foostan
2
2.4k
グローバルなコンパウンド戦略を支えるモジュラーモノリスとドメイン駆動設計
kawauso
3
9.9k
Claude Code はじめてガイド -1時間で学べるAI駆動開発の基本と実践-
oikon48
1
320
レガシーで硬直したテーブル設計から変更容易で柔軟なテーブル設計にする
red_frasco
4
630
.NET 10のEntity Framework Coreの新機能
htkym
0
130
Featured
See All Featured
Fireside Chat
paigeccino
41
3.7k
Why Our Code Smells
bkeepers
PRO
340
57k
Building an army of robots
kneath
306
46k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Making Projects Easy
brettharned
120
6.5k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Bash Introduction
62gerente
615
210k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Agile that works and the tools we love
rasmusluckow
331
21k
Raft: Consensus for Rubyists
vanstee
140
7.2k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
Transcript
Boxes and whiskers — generated by Stable Diffusion XL v1.0
2024 12 R ( ) (2) — (WBS) 2024 12 R ( ) (2) — — 2024-11 – p.1/14
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2024-winter 2024 12 R ( ) (2) — — 2024-11
– p.2/14
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch • 10 R ( ) (2) — χ2 • 11 R ( ) (1) — • 12 R ( ) (2) — • 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/16 ) / (2 ) OK / 2024 12 R ( ) (2) — — 2024-11 – p.3/14
N(µ, σ2) ρ 2 ( : ˆ y = a
+ b1 x1 + b2 x2 + e ) 2024 12 R ( ) (2) — — 2024-11 – p.4/14
N(µ, σ2) “rnorm()” set.seed(173205) # # N(50, 10^2) 100 x
<- rnorm(n=100, mean=50, sd=10) # x # hist(x) mean(x) sd(x) 2024 12 R ( ) (2) — — 2024-11 – p.5/14
Histogram of x x Frequency 10 20 30 40 50
60 70 80 0 5 10 15 20 25 30 35 mean(x) : 50.06994 sd(x) : 10.30096 2024 12 R ( ) (2) — — 2024-11 – p.6/14
ρ 2 (1/2) MASS “mvrnorm()” “ .R” # r =
0.9 # t = 3.7 # r = 15.2 # t = 7.5 # = -0.5 # <- matrix(c( r^2, * t * r, * r * t, t^2 ), nrow=2) 2024 12 R ( ) (2) — — 2024-11 – p.7/14
“mvrnorm()” = S xx S xy S xy S yy
= S xx rS x S y rS x S y S yy ( r = S xy S x S y ) 2 x, y x, y, z, . . . 2024 12 R ( ) (2) — — 2024-11 – p.8/14
ρ 2 (2/2) MASS “mvrnorm()” “ .R” # set.seed(28284) <-
mvrnorm(n=100, mu=c( r, t), Sigma= ) <- pmin(pmax( [,1], 13.0), 19.9) <- pmin(pmax( [,2], 0.0), 20.0) “ [,1]” “ [,2]” plot 2024 12 R ( ) (2) — — 2024-11 – p.9/14
0 5 10 15 20 13 14 15 16 17
18 ㈇ࡢ┦㛵ࡢ 㐌ᙜࡓࡾࡢㄢእ㐠ື㛫 100m㉮ࡢࢱ࣒ (⛊) r : -0.5932345 ( ) -0.5884094 ( ) 2024 12 R ( ) (2) — — 2024-11 – p.10/14
(1/2) “ .R” n <- 50 # a <- 49.4
# ( (158cm ) ) # r_father <- 0.306 mean_father <- 168.78 sd_father <- 3.2 # r_mother <- 0.37 mean_mother <- 155.32 sd_mother <- 2.45 2024 12 R ( ) (2) — — 2024-11 – p.11/14
(2/2) “ .R” <- round(rnorm(n=n, mean=mean_father, sd=sd_father), digits=1) <- round(rnorm(n=n,
mean=mean_mother, sd=sd_mother), digits=1) e <- rnorm(n=n, mean=0, sd=2.8) # <- round(a + r_father * + r_mother * + e, digits=1) 1 “round()” plot 2024 12 R ( ) (2) — — 2024-11 – p.12/14
ፉ㌟㛗 160 165 170 175 152 156 160 164 160
165 170 175 ∗㌟㛗 152 156 160 164 150 154 158 150 154 158 ẕ㌟㛗 : 34.2484 : 0.3545 : 0.4137 : 0.2831 2024 12 R ( ) (2) — — 2024-11 – p.13/14
2024 12 R ( ) (2) — — 2024-11 –
p.14/14