Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R を用いた分析(補講) (2) — 人工データの生成 / Analysis using R ...
Search
Kenji Saito
PRO
November 30, 2024
Technology
0
49
R を用いた分析(補講) (2) — 人工データの生成 / Analysis using R (supplementary) (2) - Generating artificial data
早稲田大学大学院経営管理研究科「企業データ分析」2024 冬のオンデマンド教材 第12回で使用したスライドです。
Kenji Saito
PRO
November 30, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
発表と総括 / Presentations and Summary
ks91
PRO
0
17
サイバーフィジカル社会、金融の未来とアイデアソン / Cyber Physical Society, Future of Finance, and Ideathon
ks91
PRO
0
55
マニフェスト: 人類の知のフロンティアに向けた拡張的足場へ / Manifesto: Toward Expansive Scaffolding for Humanity's Knowledge Frontier
ks91
PRO
0
12
続・スマートコントラクトと分散ファイナンス / Smart Contracts and Decentralized Finance, Continued
ks91
PRO
0
52
スマートコントラクトと分散ファイナンス / Smart Contracts and Decentralized Finance
ks91
PRO
0
64
シン・ブロックチェーン / Truth of Blockchain
ks91
PRO
0
100
パスワード/パスフレーズと認証 / Password, Passphrase and Authentication
ks91
PRO
0
37
git と GitHub / git and GitHub
ks91
PRO
0
36
ソフトウェアの開発と保守 / Software Development and Maintenance
ks91
PRO
0
56
Other Decks in Technology
See All in Technology
SRE with AI:実践から学ぶ、運用課題解決と未来への展望
yoshiiryo1
0
380
Data Engineering Study#30 LT資料
tetsuroito
1
310
Frontier Airlines Customer®️ USA Contact Numbers: Complete 2025 Support Guide
frontierairlineswithflyagent
0
100
無理しない AI 活用サービス / #jazug
koudaiii
0
100
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
13k
SREのためのeBPF活用ステップアップガイド
egmc
2
1.3k
データ戦略部門 紹介資料
sansan33
PRO
1
3.3k
american aa airlines®️ USA Contact Numbers: Complete 2025 Support Guide
aaguide
0
500
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
6.9k
Amplify Gen2から知るAWS CDK Toolkit Libraryの使い方/How to use the AWS CDK Toolkit Library as known from Amplify Gen2
fossamagna
1
360
AIでテストプロセス自動化に挑戦する
sakatakazunori
1
560
ClaudeCode_vs_GeminiCLI_Terraformで比較してみた
tkikuchi
1
2.4k
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.4k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Automating Front-end Workflow
addyosmani
1370
200k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
Navigating Team Friction
lara
187
15k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
840
Writing Fast Ruby
sferik
628
62k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Docker and Python
trallard
45
3.5k
Scaling GitHub
holman
460
140k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Transcript
Boxes and whiskers — generated by Stable Diffusion XL v1.0
2024 12 R ( ) (2) — (WBS) 2024 12 R ( ) (2) — — 2024-11 – p.1/14
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2024-winter 2024 12 R ( ) (2) — — 2024-11
– p.2/14
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch • 10 R ( ) (2) — χ2 • 11 R ( ) (1) — • 12 R ( ) (2) — • 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/16 ) / (2 ) OK / 2024 12 R ( ) (2) — — 2024-11 – p.3/14
N(µ, σ2) ρ 2 ( : ˆ y = a
+ b1 x1 + b2 x2 + e ) 2024 12 R ( ) (2) — — 2024-11 – p.4/14
N(µ, σ2) “rnorm()” set.seed(173205) # # N(50, 10^2) 100 x
<- rnorm(n=100, mean=50, sd=10) # x # hist(x) mean(x) sd(x) 2024 12 R ( ) (2) — — 2024-11 – p.5/14
Histogram of x x Frequency 10 20 30 40 50
60 70 80 0 5 10 15 20 25 30 35 mean(x) : 50.06994 sd(x) : 10.30096 2024 12 R ( ) (2) — — 2024-11 – p.6/14
ρ 2 (1/2) MASS “mvrnorm()” “ .R” # r =
0.9 # t = 3.7 # r = 15.2 # t = 7.5 # = -0.5 # <- matrix(c( r^2, * t * r, * r * t, t^2 ), nrow=2) 2024 12 R ( ) (2) — — 2024-11 – p.7/14
“mvrnorm()” = S xx S xy S xy S yy
= S xx rS x S y rS x S y S yy ( r = S xy S x S y ) 2 x, y x, y, z, . . . 2024 12 R ( ) (2) — — 2024-11 – p.8/14
ρ 2 (2/2) MASS “mvrnorm()” “ .R” # set.seed(28284) <-
mvrnorm(n=100, mu=c( r, t), Sigma= ) <- pmin(pmax( [,1], 13.0), 19.9) <- pmin(pmax( [,2], 0.0), 20.0) “ [,1]” “ [,2]” plot 2024 12 R ( ) (2) — — 2024-11 – p.9/14
0 5 10 15 20 13 14 15 16 17
18 ㈇ࡢ┦㛵ࡢ 㐌ᙜࡓࡾࡢㄢእ㐠ື㛫 100m㉮ࡢࢱ࣒ (⛊) r : -0.5932345 ( ) -0.5884094 ( ) 2024 12 R ( ) (2) — — 2024-11 – p.10/14
(1/2) “ .R” n <- 50 # a <- 49.4
# ( (158cm ) ) # r_father <- 0.306 mean_father <- 168.78 sd_father <- 3.2 # r_mother <- 0.37 mean_mother <- 155.32 sd_mother <- 2.45 2024 12 R ( ) (2) — — 2024-11 – p.11/14
(2/2) “ .R” <- round(rnorm(n=n, mean=mean_father, sd=sd_father), digits=1) <- round(rnorm(n=n,
mean=mean_mother, sd=sd_mother), digits=1) e <- rnorm(n=n, mean=0, sd=2.8) # <- round(a + r_father * + r_mother * + e, digits=1) 1 “round()” plot 2024 12 R ( ) (2) — — 2024-11 – p.12/14
ፉ㌟㛗 160 165 170 175 152 156 160 164 160
165 170 175 ∗㌟㛗 152 156 160 164 150 154 158 150 154 158 ẕ㌟㛗 : 34.2484 : 0.3545 : 0.4137 : 0.2831 2024 12 R ( ) (2) — — 2024-11 – p.13/14
2024 12 R ( ) (2) — — 2024-11 –
p.14/14