Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Nine months of food
Search
Lars Yencken
October 17, 2013
0
240
Nine months of food
A talk I gave on food tracking to the Melbourne Quantified Self Meetup.
Lars Yencken
October 17, 2013
Tweet
Share
More Decks by Lars Yencken
See All by Lars Yencken
Linguistics, a whirlwind tour!
larsyencken
0
52
Pycon 2014 Recap
larsyencken
0
58
The Great Language Game
larsyencken
0
270
Automation for web development
larsyencken
0
150
Scaling a web stack
larsyencken
4
190
Similarity metrics for Japanese kanji
larsyencken
0
74
Featured
See All Featured
KATA
mclloyd
29
14k
Docker and Python
trallard
44
3.3k
A Tale of Four Properties
chriscoyier
158
23k
Making Projects Easy
brettharned
116
6k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Designing for Performance
lara
604
68k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
The Language of Interfaces
destraynor
156
24k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
366
25k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.6k
Transcript
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Nine months of food Lars Yencken Melbourne Quantified Self Meetup 17th October 2013
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Attempts at measurement ▶ Location: GPS tracking over time ▶ Habits: daily habits like meditation ▶ Writing: patterns and themes in my writing ▶ Coding: how long I spend editing what ▶ Food: what I eat when
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Earlier this year... ▶ Overweight at 94 kg ▶ In at-risk category for diabetes ▶ Active-ish, but not fit ▶ Long hours of computer work
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . More generally ▶ Modern food ▶ Quantity: our bodies mislead us, food is abundant* ▶ Quality: food is optimised for taste, not health ▶ Intolerance: our diet contains vast numbers of ingredients ▶ Modern living ▶ Sedentary workplaces: we sit, all day
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . My weight Historic range 87-105 kg Jan 2013 94 kg
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . My weight Historic range 87-105 kg Jan 2013 94 kg Target (bet) 85 kg
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Tools Easy Diet Diary Bathroom scales
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Binges?
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . How it unfolded... 1. I became hungry, very hungry, and tired 2. To eat more, I drifted to a healthier range of foods 3. To eat more, I increased my exercise 4. I lost about 12 kg 5. My energy largely returned, and I found myself “fit”
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . 2012 2013 80 85 90 95 Weight over time Date Weight (kg)
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Dataset
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . ▶ Food ▶ 185 days of meals ▶ 11.5 items/day on average ▶ 550 distinct food items (manually relabelled) ▶ Weight and macronutrients per item ▶ Weight ▶ 223 days of body mass and body fat percentage ▶ Exercise ▶ 185 days, still locked in software
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . What did I eat?
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Most common foods Food Count bread 88 protein 85 alcohol-beer 84 crispbread 82 coffee 73 milk-cow 70 vegies-tomato 67 vegies-cucumber 62 fruit-banana 61 salad 53
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . How much do I eat?
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . 0 5000 10000 15000 20000 25000 0e+00 2e−05 4e−05 6e−05 8e−05 1e−04 Daily energy consumption (gross) Energy (KJ) Frequency
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . How much can I eat?
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Tomorrow’s weight change based on how much I eat today (wt+1 − wt ) = α(et − ebase ) + noise
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . > summary(lm(w$weightdiff ~ w$energy)) ... Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -4.545e-01 1.505e-01 -3.020 0.00310 ** w.e$energy 4.071e-05 1.458e-05 2.791 0.00613 ** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.6491 on 118 degrees of freedom (53 observations deleted due to missingness) Multiple R-squared: 0.06194, Adjusted R-squared: 0.05399 F-statistic: 7.791 on 1 and 118 DF, p-value: 0.006125
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . ebase 11.2 MJ α 40.7 g per MJ (24.6 MJ per kg) fat 37 MJ per kg
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . ebase 11.2 MJ α 40.7 g per MJ (24.6 MJ per kg) fat 37 MJ per kg but... missing exercise data
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Do large breakfasts help?
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . 0 2000 4000 6000 8000 0 5000 10000 15000 20000 Breakfast vs rest of day Breakfast (kJ) Rest of day (kJ)
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . How much meat do I eat?
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . ▶ Manually tagged foods containing meat ▶ Results ▶ 20% of days meat free ▶ 63% of meals meat free
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Breakfast Lunch Snacks Dinner Vegetarian 141 (78%) 80 (47%) 145 (91%) 57 (35%) With meat 39 (22%) 89 (53%) 14 (9%) 105 (65%) Total 180 169 159 162
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . What foods do I eat together?
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Itemsets Support Food 46 vegies-cucumber + vegies-tomato 37 crispbread + vegies-tomato 37 crispbread + vegies-cucumber 34 crispbread + vegies-cucumber + vegies-tomato 32 fruit-banana + protein 32 bread + vegies-tomato 30 alcohol-beer + vegies-tomato 30 alcohol-beer + vegies-cucumber 29 coffee + protein 29 bread + vegies-cucumber
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. .
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . How much caffeine do I consume?
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Jan 05 2013 Feb 08 2013 May 01 2013 Jun 03 2013 Jul 22 2013 Sep 01 2013 Oct 01 2013 0 20 40 60 80 100 Caffeine consumption per day (rolling mean) Caffeine (mg)
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Data wierdness ▶ Varying granularity of meals ▶ Low-density foods sometimes left out ▶ Not enough detail for intolerances
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . In retrospect ▶ Great benefits ▶ Measurement has helped me become healthy ▶ Much unresolved ▶ What foods make me most alert? ▶ Am I intolerant to foods I eat? ▶ Need matching datasets to answer more questions
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Thanks!