$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The Great Language Game
Search
Lars Yencken
September 02, 2013
Programming
0
330
The Great Language Game
A brief introduction to the Great Language Game, given to the Melbourne Python User Group.
Lars Yencken
September 02, 2013
Tweet
Share
More Decks by Lars Yencken
See All by Lars Yencken
Linguistics, a whirlwind tour!
larsyencken
0
58
Pycon 2014 Recap
larsyencken
0
66
Nine months of food
larsyencken
0
280
Automation for web development
larsyencken
0
160
Scaling a web stack
larsyencken
4
200
Similarity metrics for Japanese kanji
larsyencken
0
87
Other Decks in Programming
See All in Programming
Flutter On-device AI로 완성하는 오프라인 앱, 박제창 @DevFest INCHEON 2025
itsmedreamwalker
1
140
Full-Cycle Reactivity in Angular: SignalStore mit Signal Forms und Resources
manfredsteyer
PRO
0
160
LLM Çağında Backend Olmak: 10 Milyon Prompt'u Milisaniyede Sorgulamak
selcukusta
0
130
DevFest Android in Korea 2025 - 개발자 커뮤니티를 통해 얻는 가치
wisemuji
0
170
Developing static sites with Ruby
okuramasafumi
0
320
The Art of Re-Architecture - Droidcon India 2025
siddroid
0
120
AIコーディングエージェント(Gemini)
kondai24
0
260
令和最新版Android Studioで化石デバイス向けアプリを作る
arkw
0
430
Go コードベースの構成と AI コンテキスト定義
andpad
0
130
新卒エンジニアのプルリクエスト with AI駆動
fukunaga2025
0
230
脳の「省エネモード」をデバッグする ~System 1(直感)と System 2(論理)の切り替え~
panda728
PRO
0
120
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
160
Featured
See All Featured
Discover your Explorer Soul
emna__ayadi
2
1k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
How GitHub (no longer) Works
holman
316
140k
Typedesign – Prime Four
hannesfritz
42
2.9k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
115
91k
We Have a Design System, Now What?
morganepeng
54
7.9k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
750
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
510
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
98
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
29
Transcript
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . The Great Language Game Lars Yencken Melbourne Python User Group September 2, 2013
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . I’m a language geek
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . I’m a human language geek
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . The world has something like 7,000 languages
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . The world has something like 7,000 languages So many!
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . The world has something like 7,000 languages Too many to learn!
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . But... with the help of a lil Python we can at least learn to tell the difference between languages
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Aside: langid.py Distinguish between languages in text form
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Aside: langid.py Distinguish between languages in text form ผู้สื่อข่าวไทยวิเคราะห์นโยบายผู้ขอลี้ภัยพรรคต่างๆ >>> import langid >>> langid.classify(l.encode(’utf8’)) (’th’, 1.0) >>> langid.classify(’¡Venga hombre!’) (’es’, 0.5726778160604622)
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . First attempt: streaming radio ▶ There’s lots of internet radio out there! ▶ But it’s all in shitty old formats ▶ And Python support for decoding them all is not great ▶ Solution: sh module and mplayer ▶ Still too hard!
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Second attempt: scrape SBS ▶ Podcasts News podcasts in about 70 languages ▶ Good quality recordings! ▶ (Sometimes) daggy Australian accents ▶ Fetching: pyquery, requests and parse ▶ Processing audio: wave + sh wrapping avconv and mp3gain ▶ Success!
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Aside: sh Wraps shell calls like a boss! >>> from sh import ffmpeg >>> ffmpeg(’-i’, input_file, output_file) >>> from sh import mp3gain >>> mp3gain(’-r’, ’-k’, ’-t’, ’-s’, ’r’, sound_file)
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . More about languages ▶ Wikipedia: manual data entry ▶ Freebase API: via requests
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . End result: demo time!
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Thanks http://greatlanguagegame.com/