$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Pycon 2014 Recap
Search
Lars Yencken
June 02, 2014
Programming
0
64
Pycon 2014 Recap
Personal highlights from PyCon 2014 in Montreal.
Lars Yencken
June 02, 2014
Tweet
Share
More Decks by Lars Yencken
See All by Lars Yencken
Linguistics, a whirlwind tour!
larsyencken
0
56
Nine months of food
larsyencken
0
280
The Great Language Game
larsyencken
0
320
Automation for web development
larsyencken
0
150
Scaling a web stack
larsyencken
4
200
Similarity metrics for Japanese kanji
larsyencken
0
86
Other Decks in Programming
See All in Programming
モダンJSフレームワークのビルドプロセス 〜なぜReactは503行、Svelteは12行なのか〜
fuuki12
0
130
TypeScript 5.9 で使えるようになった import defer でパフォーマンス最適化を実現する
bicstone
1
530
チーム開発の “地ならし"
konifar
8
6.3k
GeistFabrik and AI-augmented software development
adewale
PRO
0
210
TVerのWeb内製化 - 開発スピードと品質を両立させるまでの道のり
techtver
PRO
3
1.2k
Java_プロセスのメモリ監視の落とし穴_NMT_で見抜けない_glibc_キャッシュ問題_.pdf
ntt_dsol_java
0
230
Microservices Platforms: When Team Topologies Meets Microservices Patterns
cer
PRO
1
650
しっかり学ぶ java.lang.*
nagise
1
460
All(?) About Point Sets
hole
0
230
Why Kotlin? 電子カルテを Kotlin で開発する理由 / Why Kotlin? at Henry
agatan
1
130
How Software Deployment tools have changed in the past 20 years
geshan
0
19k
最新のDirectX12で使えるレイトレ周りの機能追加について
projectasura
0
310
Featured
See All Featured
jQuery: Nuts, Bolts and Bling
dougneiner
65
8k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Docker and Python
trallard
46
3.7k
Being A Developer After 40
akosma
91
590k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Music & Morning Musume
bryan
46
7k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
Visualization
eitanlees
150
16k
KATA
mclloyd
PRO
32
15k
How to Ace a Technical Interview
jacobian
280
24k
Transcript
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . PyCon US Recap Lars Yencken Melbourne Python User Group 2 Jun 2014
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . My focus Python as a data science toolkit
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Data science ▶ IPython project’s 2.x releases ▶ Modal keybindings ▶ Interative widgets ▶ sklearn ▶ Becoming the standard toolkit for machine learning in Python ▶ pandas ▶ Once the new shiny, now the standard
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Web stacks Django and Flask have momentum
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Python 3 ▶ Python 3.4 just released (pip, enum, asyncio, …) ▶ Old, large codebases will migrate to 2.7 but not beyond ▶ Everyone else… time to switch your default Python? ▶ Personally: using both pyenv and anaconda
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . import asyncio @asyncio.coroutine def greet_every_two_seconds(): while True: print(’Hello World’) yield from asyncio.sleep(2) loop = asyncio.get_event_loop() loop.run_until_complete(greet_every_two_seconds())
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Diversity ▶ Today: gender ▶ In industry: 1 in 6 software engineers women ▶ At PyCon: 1 in 3 speakers/attendees women ▶ Challenges begin in high school teaching
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Outstanding talks
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Julie Lavoie / Analyising Rap Lyrics in Python http://pyvideo.org/video/2658/analyzing-rap-lyrics-with-python
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Greg Wilson / Software Carpentry: Lessons Learned http://pyvideo.org/video/2649/software-carpentry-lessons-learned
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Elena Williams / Hitchhikers Guide to Participating in Open Source http://pyvideo.org/video/2646/ hitchhikers-guide-to-participating-in-open-source
. . . .. . . . .. . .
. .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .. . Well that’s me... Been watching PyVideo? What did you enjoy? http://pyvideo.org/category/50/pycon-us-2014