Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MLKit-munich.pdf
Search
Sergii Khomenko
September 08, 2018
0
37
MLKit-munich.pdf
Sergii Khomenko
September 08, 2018
Tweet
Share
More Decks by Sergii Khomenko
See All by Sergii Khomenko
Handle your Lambdas - From event-based processing to Continuous Integration / Munich AWS User Group - Mar 17, 2016
lc0
1
250
From Data Science to Production - deploy, scale, enjoy! / PyData Amsterdam - Mar 12, 2016
lc0
1
200
Building Data applications with Go: from Bloom filters to Data pipelines / FOSDEM - Jan 31, 2016
lc0
1
200
Building data pipelines: from simple to more advanced - hands-on experience / CrunchConf - Oct 29, 2015
lc0
0
99
Scaling up Business Intelligence from the scratch and to 15 countries worldwide / Budapest BI Forum - Oct 15, 2015
lc0
0
58
Secure Data Scalability at Stylight with Tableau Online and Amazon Redshift / Tableau Conference on Tour - Berlin - Jun 9, 2015
lc0
0
140
Helping Data Teams with Puppet / Puppet Camp London - Apr 13, 2015
lc0
0
240
Scaling your Tableau - Migrating from Tableau Online to a proper DWH solution / Munich Tableau User Group - Feb 26, 2015
lc0
0
65
Building Ranking Infrastructure: Data-Driven, Lean, Flexible - Sergii Khomenko, STYLIGHT / ApacheCon EU, Budapest 2014
lc0
0
59
Featured
See All Featured
Balancing Empowerment & Direction
lara
2
570
A Modern Web Designer's Workflow
chriscoyier
695
190k
Scaling GitHub
holman
462
140k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
A better future with KSS
kneath
239
17k
Unsuck your backbone
ammeep
671
58k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.8k
Agile that works and the tools we love
rasmusluckow
329
21k
How GitHub (no longer) Works
holman
314
140k
Measuring & Analyzing Core Web Vitals
bluesmoon
8
550
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
20k
Transcript
Making your apps smart with MLKit From recognizing text to
recognizing landmarks and all the way to deploying custom Tensorflow Lite Models Sergii Khomenko, @lc0d3r
None
None
None
None
None
None
None
None
None
None
None
None
Dependencies
On-device text recognition
On-device text recognition
On-device text recognition
Cloud text recognition
Cloud text recognition
None
None
None
None
Key capabilities • TensorFlow Lite model hosting • On-device ML
inference • Automatic model fallback • Automatic model updates
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
MLKit + Firebase • Easy model delivery • Let you
focus on ML, not on mobile dev • “magic” features for free from Google
None
Links • https://codelabs.developers.google.com/codelabs/mlkit- android/index.html?index=..%2F..%2Fio2018#3 • https://firebase.google.com/docs/ml-kit/use-custom- models?authuser=0 • https://arxiv.org/abs/1503.02531