Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Anonymize Large-scale Sparse User Features at L...
Search
LINE Developers
March 07, 2019
Technology
2
3.7k
Anonymize Large-scale Sparse User Features at LINE Corp
2019/3/7 Machine Learning Production Pitch #1
Yeo Chaerim
LINE Developers
March 07, 2019
Tweet
Share
More Decks by LINE Developers
See All by LINE Developers
LINEスタンプのSREing事例集:大きなスパイクアクセスを捌くためのSREing
line_developers
3
2.4k
Java 21 Overview
line_developers
6
1.2k
Code Review Challenge: An example of a solution
line_developers
1
1.5k
KARTEのAPIサーバ化
line_developers
1
590
著作権とは何か?〜初歩的概念から権利利用法、侵害要件まで
line_developers
5
2.3k
生成AIと著作権 〜生成AIによって生じる著作権関連の課題と対処
line_developers
3
2.3k
マイクロサービスにおけるBFFアーキテクチャでのモジュラモノリスの導入
line_developers
9
3.8k
A/B Testing at LINE NEWS
line_developers
3
1.1k
LINEのサポートバージョンの考え方
line_developers
2
1.4k
Other Decks in Technology
See All in Technology
kintone開発のプラットフォームエンジニアの紹介
cybozuinsideout
PRO
0
550
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
17k
CodeRabbit CLI + Claude Codeの連携について
oikon48
0
510
Hardware/Software Co-design: Motivations and reflections with respect to security
bcantrill
1
210
田舎で20年スクラム(後編):一個人が企業で長期戦アジャイルに挑む意味
chinmo
1
1.6k
Oracle Database@Azure:サービス概要のご紹介
oracle4engineer
PRO
3
420
会社紹介資料 / Sansan Company Profile
sansan33
PRO
13
400k
AI アクセラレータチップ AWS Trainium/Inferentia に 今こそ入門
yoshimi0227
1
280
AI時代のアジャイルチームを目指して ー スクラムというコンフォートゾーンからの脱却 ー / Toward Agile Teams in the Age of AI
takaking22
11
7.1k
#22 CA × atmaCup 3rd 1st Place Solution
yumizu
1
230
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.3k
みんなでAI上手ピーポーになろう! / Let’s All Get AI-Savvy!
kaminashi
0
170
Featured
See All Featured
The Cult of Friendly URLs
andyhume
79
6.8k
Docker and Python
trallard
47
3.7k
Joys of Absence: A Defence of Solitary Play
codingconduct
1
270
Designing Powerful Visuals for Engaging Learning
tmiket
0
200
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
110
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
61
48k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Bash Introduction
62gerente
615
210k
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
99
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Transcript
ANONYMIZE LARGE-SCALE SPARSE USER FEATURES AT LINE CORP CHAERIM YEO,
LINE CORPORATION MACHINE LEARNING PRODUCTION PITCH #1, 2019/03/07
ABOUT ME l Chaerim Yeo(呂 彩林) l 2018.12 ~ LINE
Corporation l Account Platform Development Dept. l Ad performance optimization
Agenda • Z-Features • Y-Features • Evaluation • Conclusion
Z-FEATURES
WHAT ARE Z-FEATURES
WHAT ARE Z-FEATURES
WHAT ARE Z-FEATURES
WHAT ARE Z-FEATURES
WHAT ARE Z-FEATURES
BENEFIT OF Z-FEATURES Reusable Flexible
LIMITATION OF Z-FEATURES Human Interpretable Extremely Sparse
Y-FEATURES
BEYOND Z-FEATURES Obfuscation Dimensionality Reduction
BEYOND Z-FEATURES Obfuscation Dimensionality Reduction With keeping information as far
as possible
BEYOND Z-FEATURES Obfuscation Dimensionality Reduction SCDV https://arxiv.org/abs/1612.06778
OVERVIEW OF SCDV
INTEGRATE Z-FEATURES WITH SCDV
SYSTEM OVERVIEW
EVALUATION
DATA DIMENSION RELATIVE TO Z-FEATURES (LOG-SCALE) 0.0001 0.0010 0.0100 0.1000
1.0000 10.0000 100.0000 type1 type2 type3 type4 type5 type6 type7 type8 type9
DATA DENSITY LOG-SCALE 0.0000001 0.0000010 0.0000100 0.0001000 0.0010000 0.0100000 0.1000000
1.0000000 type1 type2 type3 type4 type5 type6 type7 type8 type9 z-features y-features
DATA SIZE RELATIVE TO Z-FEATURES 0.00 5.00 10.00 15.00 20.00
25.00 30.00 35.00 40.00 45.00 50.00 type1 type2 type3 type4 type5 type6 type7 type8 type9
USER DEMOGRAPHICS ESTIMATION MATRICS (RELATIVE TO Z-FEATURES) 0.95 0.96 0.97
0.98 0.99 1.00 1.01 1.02 gender age-group region precision recall f1-score
USER DEMOGRAPHICS ESTIMATION RUNNING TIME (RELATIVE TO Z-FEATURES) 0.00 0.05
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 gender age-group region training prediction
CONCLUSION
CONCLUSION l Anonymize user features based on SCDV l Enough
to use in ML l Future works l Add workflow to production l Apply further dimensionality reduction l Auto encoders, PCA, …
THANK YOU