Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Anonymize Large-scale Sparse User Features at L...
Search
LINE Developers
March 07, 2019
Technology
2
3.7k
Anonymize Large-scale Sparse User Features at LINE Corp
2019/3/7 Machine Learning Production Pitch #1
Yeo Chaerim
LINE Developers
March 07, 2019
Tweet
Share
More Decks by LINE Developers
See All by LINE Developers
LINEスタンプのSREing事例集:大きなスパイクアクセスを捌くためのSREing
line_developers
3
2.3k
Java 21 Overview
line_developers
6
1.2k
Code Review Challenge: An example of a solution
line_developers
1
1.4k
KARTEのAPIサーバ化
line_developers
1
550
著作権とは何か?〜初歩的概念から権利利用法、侵害要件まで
line_developers
5
2.2k
生成AIと著作権 〜生成AIによって生じる著作権関連の課題と対処
line_developers
3
2.2k
マイクロサービスにおけるBFFアーキテクチャでのモジュラモノリスの導入
line_developers
9
3.6k
A/B Testing at LINE NEWS
line_developers
3
1k
LINEのサポートバージョンの考え方
line_developers
2
1.3k
Other Decks in Technology
See All in Technology
初めてAWSを使うときのセキュリティ覚書〜初心者支部編〜
cmusudakeisuke
1
240
AIエージェント開発用SDKとローカルLLMをLINE Botと組み合わせてみた / LINEを使ったLT大会 #14
you
PRO
0
110
BPaaSにおける人と協働する前提のAIエージェント-AWS登壇資料
kentarofujii
0
130
AI開発ツールCreateがAnythingになったよ
tendasato
0
120
Obsidian応用活用術
onikun94
2
480
エラーとアクセシビリティ
schktjm
1
1.2k
Autonomous Database - Dedicated 技術詳細 / adb-d_technical_detail_jp
oracle4engineer
PRO
4
10k
「何となくテストする」を卒業するためにプロダクトが動く仕組みを理解しよう
kawabeaver
0
390
【初心者向け】ローカルLLMの色々な動かし方まとめ
aratako
7
3.4k
ZOZOマッチのアーキテクチャと技術構成
zozotech
PRO
3
1.5k
Webブラウザ向け動画配信プレイヤーの 大規模リプレイスから得た知見と学び
yud0uhu
0
230
2025年になってもまだMySQLが好き
yoku0825
8
4.7k
Featured
See All Featured
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
Designing Experiences People Love
moore
142
24k
Facilitating Awesome Meetings
lara
55
6.5k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Agile that works and the tools we love
rasmusluckow
330
21k
BBQ
matthewcrist
89
9.8k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Fireside Chat
paigeccino
39
3.6k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Transcript
ANONYMIZE LARGE-SCALE SPARSE USER FEATURES AT LINE CORP CHAERIM YEO,
LINE CORPORATION MACHINE LEARNING PRODUCTION PITCH #1, 2019/03/07
ABOUT ME l Chaerim Yeo(呂 彩林) l 2018.12 ~ LINE
Corporation l Account Platform Development Dept. l Ad performance optimization
Agenda • Z-Features • Y-Features • Evaluation • Conclusion
Z-FEATURES
WHAT ARE Z-FEATURES
WHAT ARE Z-FEATURES
WHAT ARE Z-FEATURES
WHAT ARE Z-FEATURES
WHAT ARE Z-FEATURES
BENEFIT OF Z-FEATURES Reusable Flexible
LIMITATION OF Z-FEATURES Human Interpretable Extremely Sparse
Y-FEATURES
BEYOND Z-FEATURES Obfuscation Dimensionality Reduction
BEYOND Z-FEATURES Obfuscation Dimensionality Reduction With keeping information as far
as possible
BEYOND Z-FEATURES Obfuscation Dimensionality Reduction SCDV https://arxiv.org/abs/1612.06778
OVERVIEW OF SCDV
INTEGRATE Z-FEATURES WITH SCDV
SYSTEM OVERVIEW
EVALUATION
DATA DIMENSION RELATIVE TO Z-FEATURES (LOG-SCALE) 0.0001 0.0010 0.0100 0.1000
1.0000 10.0000 100.0000 type1 type2 type3 type4 type5 type6 type7 type8 type9
DATA DENSITY LOG-SCALE 0.0000001 0.0000010 0.0000100 0.0001000 0.0010000 0.0100000 0.1000000
1.0000000 type1 type2 type3 type4 type5 type6 type7 type8 type9 z-features y-features
DATA SIZE RELATIVE TO Z-FEATURES 0.00 5.00 10.00 15.00 20.00
25.00 30.00 35.00 40.00 45.00 50.00 type1 type2 type3 type4 type5 type6 type7 type8 type9
USER DEMOGRAPHICS ESTIMATION MATRICS (RELATIVE TO Z-FEATURES) 0.95 0.96 0.97
0.98 0.99 1.00 1.01 1.02 gender age-group region precision recall f1-score
USER DEMOGRAPHICS ESTIMATION RUNNING TIME (RELATIVE TO Z-FEATURES) 0.00 0.05
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 gender age-group region training prediction
CONCLUSION
CONCLUSION l Anonymize user features based on SCDV l Enough
to use in ML l Future works l Add workflow to production l Apply further dimensionality reduction l Auto encoders, PCA, …
THANK YOU