Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Anonymize Large-scale Sparse User Features at L...
Search
LINE Developers
March 07, 2019
Technology
2
3.7k
Anonymize Large-scale Sparse User Features at LINE Corp
2019/3/7 Machine Learning Production Pitch #1
Yeo Chaerim
LINE Developers
March 07, 2019
Tweet
Share
More Decks by LINE Developers
See All by LINE Developers
LINEスタンプのSREing事例集:大きなスパイクアクセスを捌くためのSREing
line_developers
3
2.3k
Java 21 Overview
line_developers
6
1.2k
Code Review Challenge: An example of a solution
line_developers
1
1.4k
KARTEのAPIサーバ化
line_developers
1
560
著作権とは何か?〜初歩的概念から権利利用法、侵害要件まで
line_developers
5
2.2k
生成AIと著作権 〜生成AIによって生じる著作権関連の課題と対処
line_developers
3
2.2k
マイクロサービスにおけるBFFアーキテクチャでのモジュラモノリスの導入
line_developers
9
3.6k
A/B Testing at LINE NEWS
line_developers
3
1k
LINEのサポートバージョンの考え方
line_developers
2
1.3k
Other Decks in Technology
See All in Technology
関係性が駆動するアジャイル──GPTに人格を与えたら、対話を通してふりかえりを習慣化できた話
mhlyc
0
130
Modern_Data_Stack最新動向クイズ_買収_AI_激動の2025年_.pdf
sagara
0
200
それでも私はContextに値を詰めたい | Go Conference 2025 / go conference 2025 fill context
budougumi0617
4
1.2k
「Verify with Wallet API」を アプリに導入するために
hinakko
1
230
o11yで育てる、強い内製開発組織
_awache
3
120
Azure Well-Architected Framework入門
tomokusaba
1
290
リーダーになったら未来を語れるようになろう/Speak the Future
sanogemaru
0
280
E2Eテスト設計_自動化のリアル___Playwrightでの実践とMCPの試み__AIによるテスト観点作成_.pdf
findy_eventslides
0
110
動画データのポテンシャルを引き出す! Databricks と AI活用への奮闘記(現在進行形)
databricksjapan
0
140
生成AI_その前_に_マルチクラウド時代の信頼できるデータを支えるSnowflakeメタデータ活用術.pdf
cm_mikami
0
110
Green Tea Garbage Collector の今
zchee
PRO
2
390
Oracle Cloud Infrastructure:2025年9月度サービス・アップデート
oracle4engineer
PRO
0
390
Featured
See All Featured
Producing Creativity
orderedlist
PRO
347
40k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Context Engineering - Making Every Token Count
addyosmani
5
180
Balancing Empowerment & Direction
lara
4
680
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
Visualization
eitanlees
148
16k
Build your cross-platform service in a week with App Engine
jlugia
232
18k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
45
2.5k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Transcript
ANONYMIZE LARGE-SCALE SPARSE USER FEATURES AT LINE CORP CHAERIM YEO,
LINE CORPORATION MACHINE LEARNING PRODUCTION PITCH #1, 2019/03/07
ABOUT ME l Chaerim Yeo(呂 彩林) l 2018.12 ~ LINE
Corporation l Account Platform Development Dept. l Ad performance optimization
Agenda • Z-Features • Y-Features • Evaluation • Conclusion
Z-FEATURES
WHAT ARE Z-FEATURES
WHAT ARE Z-FEATURES
WHAT ARE Z-FEATURES
WHAT ARE Z-FEATURES
WHAT ARE Z-FEATURES
BENEFIT OF Z-FEATURES Reusable Flexible
LIMITATION OF Z-FEATURES Human Interpretable Extremely Sparse
Y-FEATURES
BEYOND Z-FEATURES Obfuscation Dimensionality Reduction
BEYOND Z-FEATURES Obfuscation Dimensionality Reduction With keeping information as far
as possible
BEYOND Z-FEATURES Obfuscation Dimensionality Reduction SCDV https://arxiv.org/abs/1612.06778
OVERVIEW OF SCDV
INTEGRATE Z-FEATURES WITH SCDV
SYSTEM OVERVIEW
EVALUATION
DATA DIMENSION RELATIVE TO Z-FEATURES (LOG-SCALE) 0.0001 0.0010 0.0100 0.1000
1.0000 10.0000 100.0000 type1 type2 type3 type4 type5 type6 type7 type8 type9
DATA DENSITY LOG-SCALE 0.0000001 0.0000010 0.0000100 0.0001000 0.0010000 0.0100000 0.1000000
1.0000000 type1 type2 type3 type4 type5 type6 type7 type8 type9 z-features y-features
DATA SIZE RELATIVE TO Z-FEATURES 0.00 5.00 10.00 15.00 20.00
25.00 30.00 35.00 40.00 45.00 50.00 type1 type2 type3 type4 type5 type6 type7 type8 type9
USER DEMOGRAPHICS ESTIMATION MATRICS (RELATIVE TO Z-FEATURES) 0.95 0.96 0.97
0.98 0.99 1.00 1.01 1.02 gender age-group region precision recall f1-score
USER DEMOGRAPHICS ESTIMATION RUNNING TIME (RELATIVE TO Z-FEATURES) 0.00 0.05
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 gender age-group region training prediction
CONCLUSION
CONCLUSION l Anonymize user features based on SCDV l Enough
to use in ML l Future works l Add workflow to production l Apply further dimensionality reduction l Auto encoders, PCA, …
THANK YOU