Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Anonymize Large-scale Sparse User Features at L...
Search
LINE Developers
March 07, 2019
Technology
2
3.7k
Anonymize Large-scale Sparse User Features at LINE Corp
2019/3/7 Machine Learning Production Pitch #1
Yeo Chaerim
LINE Developers
March 07, 2019
Tweet
Share
More Decks by LINE Developers
See All by LINE Developers
LINEスタンプのSREing事例集:大きなスパイクアクセスを捌くためのSREing
line_developers
3
2.4k
Java 21 Overview
line_developers
6
1.3k
Code Review Challenge: An example of a solution
line_developers
1
1.5k
KARTEのAPIサーバ化
line_developers
1
600
著作権とは何か?〜初歩的概念から権利利用法、侵害要件まで
line_developers
5
2.3k
生成AIと著作権 〜生成AIによって生じる著作権関連の課題と対処
line_developers
3
2.4k
マイクロサービスにおけるBFFアーキテクチャでのモジュラモノリスの導入
line_developers
9
3.8k
A/B Testing at LINE NEWS
line_developers
3
1.1k
LINEのサポートバージョンの考え方
line_developers
2
1.4k
Other Decks in Technology
See All in Technology
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
200
会社紹介資料 / Sansan Company Profile
sansan33
PRO
15
400k
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
140
小さく始めるBCP ― 多プロダクト環境で始める最初の一歩
kekke_n
1
420
30万人の同時アクセスに耐えたい!新サービスの盤石なリリースを支える負荷試験 / SRE Kaigi 2026
genda
4
1.3k
コミュニティが変えるキャリアの地平線:コロナ禍新卒入社のエンジニアがAWSコミュニティで見つけた成長の羅針盤
kentosuzuki
0
110
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
240
CDK対応したAWS DevOps Agentを試そう_20260201
masakiokuda
1
310
外部キー制約の知っておいて欲しいこと - RDBMSを正しく使うために必要なこと / FOREIGN KEY Night
soudai
PRO
12
5.5k
生成AIを活用した音声文字起こしシステムの2つの構築パターンについて
miu_crescent
PRO
2
200
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
450
Introduction to Bill One Development Engineer
sansan33
PRO
0
360
Featured
See All Featured
How to Ace a Technical Interview
jacobian
281
24k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.2k
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
Six Lessons from altMBA
skipperchong
29
4.1k
The Limits of Empathy - UXLibs8
cassininazir
1
220
Navigating Weather and Climate Data
rabernat
0
110
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
WCS-LA-2024
lcolladotor
0
450
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1.1k
Into the Great Unknown - MozCon
thekraken
40
2.3k
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
Transcript
ANONYMIZE LARGE-SCALE SPARSE USER FEATURES AT LINE CORP CHAERIM YEO,
LINE CORPORATION MACHINE LEARNING PRODUCTION PITCH #1, 2019/03/07
ABOUT ME l Chaerim Yeo(呂 彩林) l 2018.12 ~ LINE
Corporation l Account Platform Development Dept. l Ad performance optimization
Agenda • Z-Features • Y-Features • Evaluation • Conclusion
Z-FEATURES
WHAT ARE Z-FEATURES
WHAT ARE Z-FEATURES
WHAT ARE Z-FEATURES
WHAT ARE Z-FEATURES
WHAT ARE Z-FEATURES
BENEFIT OF Z-FEATURES Reusable Flexible
LIMITATION OF Z-FEATURES Human Interpretable Extremely Sparse
Y-FEATURES
BEYOND Z-FEATURES Obfuscation Dimensionality Reduction
BEYOND Z-FEATURES Obfuscation Dimensionality Reduction With keeping information as far
as possible
BEYOND Z-FEATURES Obfuscation Dimensionality Reduction SCDV https://arxiv.org/abs/1612.06778
OVERVIEW OF SCDV
INTEGRATE Z-FEATURES WITH SCDV
SYSTEM OVERVIEW
EVALUATION
DATA DIMENSION RELATIVE TO Z-FEATURES (LOG-SCALE) 0.0001 0.0010 0.0100 0.1000
1.0000 10.0000 100.0000 type1 type2 type3 type4 type5 type6 type7 type8 type9
DATA DENSITY LOG-SCALE 0.0000001 0.0000010 0.0000100 0.0001000 0.0010000 0.0100000 0.1000000
1.0000000 type1 type2 type3 type4 type5 type6 type7 type8 type9 z-features y-features
DATA SIZE RELATIVE TO Z-FEATURES 0.00 5.00 10.00 15.00 20.00
25.00 30.00 35.00 40.00 45.00 50.00 type1 type2 type3 type4 type5 type6 type7 type8 type9
USER DEMOGRAPHICS ESTIMATION MATRICS (RELATIVE TO Z-FEATURES) 0.95 0.96 0.97
0.98 0.99 1.00 1.01 1.02 gender age-group region precision recall f1-score
USER DEMOGRAPHICS ESTIMATION RUNNING TIME (RELATIVE TO Z-FEATURES) 0.00 0.05
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 gender age-group region training prediction
CONCLUSION
CONCLUSION l Anonymize user features based on SCDV l Enough
to use in ML l Future works l Add workflow to production l Apply further dimensionality reduction l Auto encoders, PCA, …
THANK YOU