Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Anonymize Large-scale Sparse User Features at L...
Search
LINE Developers
March 07, 2019
Technology
2
3.7k
Anonymize Large-scale Sparse User Features at LINE Corp
2019/3/7 Machine Learning Production Pitch #1
Yeo Chaerim
LINE Developers
March 07, 2019
Tweet
Share
More Decks by LINE Developers
See All by LINE Developers
LINEスタンプのSREing事例集:大きなスパイクアクセスを捌くためのSREing
line_developers
3
2.3k
Java 21 Overview
line_developers
6
1.2k
Code Review Challenge: An example of a solution
line_developers
1
1.4k
KARTEのAPIサーバ化
line_developers
1
570
著作権とは何か?〜初歩的概念から権利利用法、侵害要件まで
line_developers
5
2.2k
生成AIと著作権 〜生成AIによって生じる著作権関連の課題と対処
line_developers
3
2.2k
マイクロサービスにおけるBFFアーキテクチャでのモジュラモノリスの導入
line_developers
9
3.7k
A/B Testing at LINE NEWS
line_developers
3
1k
LINEのサポートバージョンの考え方
line_developers
2
1.3k
Other Decks in Technology
See All in Technology
アウトプットから始めるOSSコントリビューション 〜eslint-plugin-vueの場合〜 #vuefes
bengo4com
3
1.9k
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
14
82k
IBC 2025 動画技術関連レポート / IBC 2025 Report
cyberagentdevelopers
PRO
2
220
データとAIで明らかになる、私たちの課題 ~Snowflake MCP,Salesforce MCPに触れて~ / Data and AI Insights
kaonavi
0
180
Amazon Athena で JSON・Parquet・Iceberg のデータを検索し、性能を比較してみた
shigeruoda
1
250
プロダクト開発と社内データ活用での、BI×AIの現在地 / Data_Findy
sansan_randd
1
660
実践マルチモーダル検索!
shibuiwilliam
1
440
【SORACOM UG Explorer 2025】さらなる10年へ ~ SORACOM MVC 発表
soracom
PRO
0
180
serverless team topology
_kensh
3
250
Zero Trust DNS でより安全なインターネット アクセス
murachiakira
0
120
オブザーバビリティが育むシステム理解と好奇心
maruloop
3
1.7k
進化する大規模言語モデル評価: Swallowプロジェクトにおける実践と知見
chokkan
PRO
1
350
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
80
6k
Statistics for Hackers
jakevdp
799
220k
Music & Morning Musume
bryan
46
6.9k
Building Applications with DynamoDB
mza
96
6.7k
Building an army of robots
kneath
306
46k
How to Ace a Technical Interview
jacobian
280
24k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Unsuck your backbone
ammeep
671
58k
A better future with KSS
kneath
239
18k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
Transcript
ANONYMIZE LARGE-SCALE SPARSE USER FEATURES AT LINE CORP CHAERIM YEO,
LINE CORPORATION MACHINE LEARNING PRODUCTION PITCH #1, 2019/03/07
ABOUT ME l Chaerim Yeo(呂 彩林) l 2018.12 ~ LINE
Corporation l Account Platform Development Dept. l Ad performance optimization
Agenda • Z-Features • Y-Features • Evaluation • Conclusion
Z-FEATURES
WHAT ARE Z-FEATURES
WHAT ARE Z-FEATURES
WHAT ARE Z-FEATURES
WHAT ARE Z-FEATURES
WHAT ARE Z-FEATURES
BENEFIT OF Z-FEATURES Reusable Flexible
LIMITATION OF Z-FEATURES Human Interpretable Extremely Sparse
Y-FEATURES
BEYOND Z-FEATURES Obfuscation Dimensionality Reduction
BEYOND Z-FEATURES Obfuscation Dimensionality Reduction With keeping information as far
as possible
BEYOND Z-FEATURES Obfuscation Dimensionality Reduction SCDV https://arxiv.org/abs/1612.06778
OVERVIEW OF SCDV
INTEGRATE Z-FEATURES WITH SCDV
SYSTEM OVERVIEW
EVALUATION
DATA DIMENSION RELATIVE TO Z-FEATURES (LOG-SCALE) 0.0001 0.0010 0.0100 0.1000
1.0000 10.0000 100.0000 type1 type2 type3 type4 type5 type6 type7 type8 type9
DATA DENSITY LOG-SCALE 0.0000001 0.0000010 0.0000100 0.0001000 0.0010000 0.0100000 0.1000000
1.0000000 type1 type2 type3 type4 type5 type6 type7 type8 type9 z-features y-features
DATA SIZE RELATIVE TO Z-FEATURES 0.00 5.00 10.00 15.00 20.00
25.00 30.00 35.00 40.00 45.00 50.00 type1 type2 type3 type4 type5 type6 type7 type8 type9
USER DEMOGRAPHICS ESTIMATION MATRICS (RELATIVE TO Z-FEATURES) 0.95 0.96 0.97
0.98 0.99 1.00 1.01 1.02 gender age-group region precision recall f1-score
USER DEMOGRAPHICS ESTIMATION RUNNING TIME (RELATIVE TO Z-FEATURES) 0.00 0.05
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 gender age-group region training prediction
CONCLUSION
CONCLUSION l Anonymize user features based on SCDV l Enough
to use in ML l Future works l Add workflow to production l Apply further dimensionality reduction l Auto encoders, PCA, …
THANK YOU