Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LINEのデータプラットフォームにおける新しいテーブルフォーマット導入の取り組み
Search
LINE Developers
February 28, 2022
Technology
0
290
LINEのデータプラットフォームにおける新しいテーブルフォーマット導入の取り組み
齋藤智之(LINE株式会社)
DEIM2022での技術報告資料です
https://cms.dbsj.org/deim2022/program/?oral#/J24
LINE Developers
February 28, 2022
Tweet
Share
More Decks by LINE Developers
See All by LINE Developers
LINEスタンプのSREing事例集:大きなスパイクアクセスを捌くためのSREing
line_developers
3
2.3k
Java 21 Overview
line_developers
6
1.2k
Code Review Challenge: An example of a solution
line_developers
1
1.4k
KARTEのAPIサーバ化
line_developers
1
570
著作権とは何か?〜初歩的概念から権利利用法、侵害要件まで
line_developers
5
2.2k
生成AIと著作権 〜生成AIによって生じる著作権関連の課題と対処
line_developers
3
2.2k
マイクロサービスにおけるBFFアーキテクチャでのモジュラモノリスの導入
line_developers
9
3.7k
A/B Testing at LINE NEWS
line_developers
3
1k
LINEのサポートバージョンの考え方
line_developers
2
1.3k
Other Decks in Technology
See All in Technology
【SORACOM UG Explorer 2025】さらなる10年へ ~ SORACOM MVC 発表
soracom
PRO
0
170
頭部ふわふわ浄酔器
uyupun
0
240
abema-trace-sampling-observability-cost-optimization
tetsuya28
0
370
AWS re:Invent 2025事前勉強会資料 / AWS re:Invent 2025 pre study meetup
kinunori
0
810
CNCFの視点で捉えるPlatform Engineering - 最新動向と展望 / Platform Engineering from the CNCF Perspective
hhiroshell
0
140
ラスベガスの歩き方 2025年版(re:Invent 事前勉強会)
junjikoide
0
570
進化する大規模言語モデル評価: Swallowプロジェクトにおける実践と知見
chokkan
PRO
1
180
20251029_Cursor Meetup Tokyo #02_MK_「あなたのAI、私のシェル」 - プロンプトインジェクションによるエージェントのハイジャック
mk0721
PRO
5
2k
可観測性は開発環境から、開発環境にもオブザーバビリティ導入のススメ
layerx
PRO
4
1.9k
AIエージェントによる業務効率化への飽くなき挑戦-AWS上の実開発事例から学んだ効果、現実そしてギャップ-
nasuvitz
5
1.4k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
140
AI時代、“平均値”ではいられない
uhyo
8
2.7k
Featured
See All Featured
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Leading Effective Engineering Teams in the AI Era
addyosmani
7
660
A designer walks into a library…
pauljervisheath
209
24k
Being A Developer After 40
akosma
91
590k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Music & Morning Musume
bryan
46
6.9k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.9k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
2.9k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
Optimizing for Happiness
mojombo
379
70k
For a Future-Friendly Web
brad_frost
180
10k
Transcript
LINEのデータプラットフォームにおける 新しいテーブルフォーマット導入の取り組み 齋藤 智之 LINE株式会社 Data Platform室 2022年2月28日 J24-6
技術報告
自己紹介 齋藤 智之 - LINE株式会社 Data Platform室 - シニアソフトウェアエンジニア -
2015年3月 東京大学大学院情報理工学系研究科 コンピュータ科学専攻 修士 修了 - 2015年4月 LINE新卒入社 - 2016年〜 データプラットフォームの開発・運用
アジェンダ - LINEのデータプラットフォーム - クエリ処理インフラにおける課題 - Apache Icebergテーブルフォーマット
LINEのデータプラットフォーム
LINE STYLE Always data-driven
LINEのデータプラットフォーム σʔλϓϥοτϑΥʔϜ αʔϏε σʔλαΠΤϯε ػցֶश σʔλϚωδϝϯτ ... σʔλυϦϒϯͳ৫ͮ͘Γ
一般的なデータフロー σʔλιʔε औΓࠐΈ ετϨʔδɾϝλσʔλ ఏڙ σʔλ׆༻ ॲཧ
データプラットフォームの役割 σʔλιʔε औΓࠐΈ ετϨʔδɾϝλσʔλ ఏڙ σʔλ׆༻ ॲཧ Πϯϑϥπʔϧͷఏڙ
LINEデータプラットフォームの特徴 σʔλιʔε औΓࠐΈ ετϨʔδɾϝλσʔλ ఏڙ σʔλ׆༻ ॲཧ Πϯϑϥπʔϧͷఏڙ Big
Big Big Big Big Big
プラットフォーム・データのスケール 5,000+ 40,000+ 290 PB+ サーバ数 データ量 テーブル数 17.5
M+ 700+ 150,000+ ログ流入量 ジョブ実行数 プラットフォーム ユーザ records / s jobs / day
技術的課題 σʔλιʔε औΓࠐΈ ετϨʔδɾϝλσʔλ ఏڙ σʔλ׆༻ ॲཧ
クエリ処理インフラにおける課題
SQLを用いたデータ処理 ετϨʔδɾϝλσʔλ ࢄSQLΫΤϦॲཧΤϯδϯ SQL Spark Hive Trino Flink HDFS
HiveMetastore
分散クエリ処理 SELECT name FROM employee ࣮ߦϓϥϯ Parse Analysis Optimization Planning
分散クエリ処理 ࣮ߦϓϥϯ Parse Analysis Optimization Planning SELECT name FROM employee
ςʔϒϧϑΥʔϚοτʹΑͬͯཧํ๏͕ఆٛ͞ΕΔ Ͳ͏ͬͯ ಡΈॻ͖͢Δ͔ σʔλϑΝΠϧ Ͳ͜ʹ͋Δ͔
デファクトスタンダード - Hiveテーブルフォーマット Metastore DB Hive Metastore Thrift API ςʔϒϧϝλσʔλHive
Metastoreͷ Thrift APIʹΑͬͯরձɾૢ࡞͞ΕΔ ςʔϒϧϝλσʔλRDBMSʹอଘ͞ΕΔ ʢMetastore DBͱݺͿʣ create_table get_partitions ౷ܭใ εΩʔϚ Serde ύʔςΟγ ϣϯ σΟϨΫτϦύεʹΑͬͯσʔλϑΝΠϧͷू߹͕ఆٛ͞ΕΔ /table/date=2021-10-01/
LINEのETLインフラ ετϨʔδ SQL Τϯδϯ Spark Hive Trino ΞυϗοΫ δϣϒ HDFS
Hive Metastore ఆظόονδϣϒ Thrift API Metastore DB
LINEのETLインフラ ετϨʔδ SQL Τϯδϯ Spark Hive Trino ΞυϗοΫ δϣϒ HDFS
Hive Metastore ఆظόονδϣϒ Thrift API Big Big Big Metastore DB
Metastore DB – 通常時QPS(1週間分)
Metastore DB – 通常時CPU使用率(1週間分)
Metastore DB – 異常時CPU使用率 Risk of outages Big blast radius
HiveテーブルフォーマットのLimitation Hive Metastore Table with O(10K) partitions High load Memory
pressure HIVE-13884 ϝλσʔλཧ͕Hive Metastoreʹڧ͘ґଘɽ̍ͭͷ ύʔςΟγϣϯ͕̍ͭͷߦͱͯ͠DBʹอଘ͞ΕΔɽ Metastore DB Limitation: େྔͷύʔςΟγϣϯΛѻ͑ͳ͍ ύʔςΟγϣϯ͕গͳ͘ͳΔΑ͏ςʔϒϧઃܭ͢Δ ͳͲɼϫʔΫΞϥϯυ͕ඞཁ
Hiveテーブルフォーマットの問題点 ςʔϒϧϝλσʔλͷরձੑೳ͕ɼதԝཧ͞ΕΔHive Metastore Metastore DBΠϯελϯεͷੑೳʹ੍ݶ͞ΕΔɽ ཻͷૈ͍ύʔςΟγϣϯͰςʔϒϧ͕ߏ͞Εɼ ඇޮͳσʔλΞΫηεʹͳΔɽ ϑΝΠϧຖͷ౷ܭใΛอଘͯ͠ΫΤϦΛ࠷దԽ͢ΔͳͲͷɼ ϝλσʔλͷվળΛ࣮ݱͮ͠Β͍ɽ ϘτϧωοΫ
ඇޮͳσʔλ ΞΫηεʹͭͳ͕Δ ΫΤϦ࠷దԽͷԸܙΛ ಘͮΒ͍
Apache Icebergテーブルフォーマット
ετϨʔδ ϑΝΠϧ ϑΥʔϚοτ Parquet ORC Avro HDFS S3 ςʔϒϧ ϑΥʔϚοτ
SQLΫΤϦ Τϯδϯ Flink Spark Hive Trino Apache Iceberg An open table format for huge analytic datasets OSS
Icebergテーブルのファイルレイアウト # Spark SQL create table sample (id int) using
iceberg; insert into sample values (100); insert into sample values (200); select * from sample; # Files in HDFS sample ├── data │ ├── 00000-2-26bcfac0-91ba-4374-a879-b780cf0608c3-00001.parquet │ └── 00000-3-4bfb85d8-3283-48f7-980d-28ea115aed80-00001.parquet └── metadata ├── 00000-811eaf6e-b0f4-4bd7-8f87-a6df1d543b34.metadata.json ├── 00001-4041324f-1920-44f4-8ce6-6088ec663e0a.metadata.json ├── 00002-66aac2ec-8f9a-4de8-a679-428bb970b1ff.metadata.json ├── 2a67328f-8386-4d1a-873a-1034824e22f8-m0.avro ├── 91e78f4a-f1df-414f-835d-45488001bba9-m0.avro ├── snap-4758351318332926243-1-2a67328f-8386-4d1a-873a-1034824e22f8.avro └── snap-5465468679579016991-1-91e78f4a-f1df-414f-835d-45488001bba9.avro
キーコンセプト εφοϓγϣοτɿ͋Δ࣌Ͱͷςʔϒϧͷঢ়ଶ s0 time σʔλ εφοϓγϣοτ Icebergがどのようにファイルを追跡するか t0
キーコンセプト s0 time s1 σʔλ Write & Commit εφοϓγϣοτɿ͋Δ࣌Ͱͷςʔϒϧͷঢ়ଶ Icebergがどのようにファイルを追跡するか
ύʔςΟγϣϯ εΩʔϚ ϑΥʔϚοτ ౷ܭใ ϑΝΠϧͷॴ t0 t1 εφοϓγϣοτ
メタデータファイルによるデータ管理 ςʔϒϧεΩʔϚɼύʔςΟγϣχϯάઃఆɼ εφοϓγϣοτΛཧ͢Δ ύʔςΟγϣϯຖͷ౷ܭΛؚΉɼϚχϑΣετϑΝΠϧʹ ͍ͭͯͷϝλσʔλΛอ࣋͢Δ σʔλϑΝΠϧͷϦετɼσʔλϑΝΠϧຖͷϝλσʔλ ౷ܭใΛอଘ͢Δ ςʔϒϧϝλσʔλ ϑΝΠϧ ϚχϑΣετϦετ
ϑΝΠϧ ϚχϑΣετ ϑΝΠϧ s0 s1 m0 m1 m2 m0 m1 d00 d01 m0 d00 d01 d10 m1 d20 m2 d10 d20 σʔλϑΝΠϧ
メタデータファイルによるデータ管理 ςʔϒϧεΩʔϚɼύʔςΟγϣχϯάઃఆɼ εφοϓγϣοτΛཧ͢Δ ύʔςΟγϣϯຖͷ౷ܭΛؚΉɼϚχϑΣετϑΝΠϧʹ ͍ͭͯͷϝλσʔλΛอ࣋͢Δ σʔλϑΝΠϧͷϦετɼσʔλϑΝΠϧຖͷϝλσʔλ ౷ܭใΛอଘ͢Δ ςʔϒϧϝλσʔλ ϑΝΠϧ ϚχϑΣετϦετ
ϑΝΠϧ ϚχϑΣετ ϑΝΠϧ s0 s1 m0 m1 m2 m0 m1 d00 d01 m0 d00 d01 d10 m1 d20 m2 d10 d20 σʔλϑΝΠϧ Hive Metastore
クエリに必要なファイルを見つける 1. ݱࡏͷεφοϓγϣοτ͔Β ϚχϑΣετϦετϑΝΠϧΛݟ͚ͭΔ 2. ύʔςΟγϣϯͷϨϯδ͔ΒɼಡΈࠐΉ͖ ϚχϑΣετϑΝΠϧΛಛఆ͢Δ 3. ϚχϑΣετϑΝΠϧΛಡΈɼ σʔλϑΝΠϧΛݟ͚ͭΔ
manifest-list = ml1 For manifest m2 and partition p, range is [20, 29] d20 file path = hdfs://... s0 s1 m0 m1 m2 m0 m1 d00 d01 m0 d00 d01 d10 m1 d20 m2 d10 d20 σʔλϑΝΠϧ ml1
ファイル毎の統計情報による最適化 ϚχϑΣετϑΝΠϧσʔλॻ͖ࠐΈ࣌ʹɼ ϑΝΠϧ୯ҐΧϥϜ୯Ґͷ౷ܭใΛอଘ͢Δ s0 s1 m0 m1 m2 m0 m1
d00 d01 m0 d00 d01 d10 m1 d20 m2 d10 d20 ml1 file_path string Location URI with FS scheme lower_bounds map<int,binary> Map of column id to lower bound upper_bounds map<int,binary> Map of column id to upper bound
違いと利点 ύʔςΟγϣχϯάཻ Hive Apache Iceberg ϝλσʔλͷอଘॴ Hive Metastore ϑΝΠϧγεςϜ ੍ݶ͞ΕΔ
੍ݶ͕؇͞ΕΔ εέʔϥϏϦςΟ ޮత ౷ܭใ ύʔςΟγϣϯຖ ϑΝΠϧຖ ύϑΥʔϚϯε
その他の機能 Serializable isolation ߦϨϕϧআ ࠩಡΈࠐΈ λΠϜτϥϕϧ εΩʔϚਐԽ Hidden partitioning
まとめ ΫΤϦॲཧΠϯϑϥʹ͓͍ͯɼதԝཧ͞ΕΔϝλσʔλετΞ͕ ϘτϧωοΫͱͳΓɼεέʔϥϏϦςΟͷ՝͕ൃੜͨ͠ɽ Apache IcebergʹΑͬͯϘτϧωοΫ͕ղফ͞ΕΔ͜ͱ͕ظ͞ΕΔɽ ·ͨɼσʔλੳʹ͓͚Δଞͷ՝ղফʹཱͭͱظ͞ΕΔɽ LINEͷσʔλϓϥοτϑΥʔϜͰద༻ʹ͚ͯϓϩδΣΫτΛਐߦதɽ
Thank you