Upgrade to Pro — share decks privately, control downloads, hide ads and more …

音声領域におけるLINEの研究開発

 音声領域におけるLINEの研究開発

木田祐介、小松達也(LINE)
電子情報通信学会 合同研究会におけるスポンサーワークショップの発表資料です
※応用音響研究会(EA)/ 信号処理研究会(SIP)/ 音声研究会(SP)/ 音声言語情報処理研究会(IPSJ-SLP)
https://www.ieice.org/ken/program/index.php?mode=program&tgs_regid=e0598d8c96d210d495b5658d544b1d74ca6b13b372932df5134795a99a6c2e9c&tgid=EA&layout=&lang=

LINE Developers

March 01, 2022
Tweet

More Decks by LINE Developers

Other Decks in Technology

Transcript

  1. -*/&ͷ"*ٕज़ྖҬ LINE AI Speech Video Voice NLU Data OCR Vision

    Face LINE Shopping Lens Adult Image Filter Scene Classification Ad image Filter Visual Search Analogous image Product Image Lip Reading Fashion Image Spot Clustering Food Image Indonesia LINE Split Bill LINE MUSIC Playlist OCR LINE CONOMI Handwritten Font Receipt OCR Credit card OCR Bill OCR Document Intelligence Identification Face Sign eKYC Face Sign Auto Cut Auto Cam Transcription Telephone network Voice recognition Single-Demand STT Simple voice High quality voice Voice Style Transfer Active Leaning Federated Leaning Action recognition Pose estimation Speech Note Vlive Auto Highlight Content Center AI CLOVA Dubbing LINE AiCall Gatebox Papago Video Insight LINE CLOVA AI Interactive Avatar Interactive Avatar Media 3D Avatar LINE Profile Lip Reading
  2. ࠃࡍδϟʔφϧࠃࡍձٞ࠾୒࣮੷ 5PUBMBDDFQUBODFTJO Title Conf/Journal Author END TO END LEARNING FOR

    CONVOLUTIVE MULTI-CHANNEL WIENER FILTERING ICASSP2021 M. Togami Disentangled speaker and language representations using mutual information minimization and domain adaptation for cross-lingual TTS ICASSP2021 T. Komatsu REFINEMENT OF DIRECTION OF ARRIVAL ESTIMATORS BY MAJORIZATION-MINIMIZATION OPTIMIZATION ON THE ARRAY MANIFOLD ICASSP2021 R. Scheibler SURROGATE SOURCE MODEL LEARNING FOR DETERMINED SOURCE SEPARATION ICASSP2021 R. Scheibler JOINT DEREVERBERATION AND SEPARATION WITH ITERATIVE SOURCE STEERING ICASSP2021 R. Scheibler, M. Togami PARALLEL WAVEFORM SYNTHESIS BASED ON GENERATIVE ADVERSARIAL NETWORKS WITH VOICING-AWARE CONDITIONAL DISCRIMINATORS ICASSP2021 R. Yamamoto TTS-BY-TTS: TTS-DRIVEN DATA AUGMENTATION FOR FAST AND HIGH-QUALITY SPEECH SYNTHESIS ICASSP2021 R. Yamamoto Independent Vector Analysis via Log-Quadratically Penalized Quadratic Minimization IEEE TSP R. Scheibler Multichannel Separation and Classification of Sound Events EUSIPCO2021 R. Scheibler, T. Komatsu, M. Togami Multi-Source Domain Adaptation with Sinkhorn Barycenter EUSIPCO2021 T. Komatsu Acoustic Event Detection with classifier chains INTERSPEECH2021 T. Komatsu Relaxing the Conditional Independence Assumption of CTC-based ASR by Conditioning on Intermediate Predictions INTERSPEECH2021 T. Komatsu Sound Source Localization with Majorization Minimization INTERSPEECH2021 M. Togami Efficient and Stable Adversarial Learning Using Unpaired Data for Unsupervised Multichannel Speech Separation INTERSPEECH2021 Y. Nakagome, M. Togami High-fidelity Parallel WaveGAN with Multi-band Harmonic-plus-Noise Model INTERSPEECH2021 R. Yamamoto Phrase break prediction with bidirectional encoder representations in Japanese text-to-speech synthesis INTERSPEECH2021 K. Futamata, B. Park, R. Yamamoto, K. Tachibana Over-Determined Semi-Blind Speech Source Separation APSIPA2021 M. Togami COMPARISON OF LOW COMPLEXITY SELF-ATTENTION MECHANISMS FOR ACOUSTIC EVENT DETECTION APSIPA2021 T. Komatsu, R. Scheibler A Comparative Study on Non-Autoregressive Modelings for Speech-to-Text Generation ASRU2021 T. Komatsu Computationally-Efficient Overdetermined Blind Source Separation Based on Iterative Source Steering IEEE SPL R. Scheibler
  3. Ի੠ೝࣝʹؔ͢Δ࠷ۙͷऔΓ૊Έ • ඇࣗݾճؼܕԻ੠ೝࣝʢ/POBVUPSFHSFTTJWF"43ʣ • $5$ʹجͮ͘/POBVUPSFHSFTTJWF"43 • ςΩετΛฒྻʹग़ྗ͢ΔͨΊߴ଎ • ฒྻग़ྗ ˠ

    ςΩετؒͷґଘؔ܎ͷߟྀ͕ۤख • ߴ଎Ͱੑೳͷߴ͍$5$ʹجͮ͘ํࣜʹ͍ͭͯݚڀ • ೥Ҏ߱ͷऔΓ૊Έ • 3FMBYJOHUIF$POEJUJPOBM*OEFQFOEFODF"TTVNQUJPOPG$5$CBTFE"43 CZ$POEJUJPOJOHPO*OUFSNFEJBUF1SFEJDUJPOT </P[BLJBOE,PNBUTV *OUFSTQFFDI> • "$PNQBSBUJWF4UVEZPO/PO"VUPSFHSFTTJWF.PEFMJOHGPS4QFFDIUP5FYU(FOFSBUJPO <)JHVDIJ "436> • /PO"VUPSFHSFTTJWF"43XJUI4FMG$POEJUJPOFE'PMEFE&ODPEFST <,PNBUTV *$"441 BDDFQUFE > ͬͪ͜
  4. ԻڹΠϕϯτݕग़ "DPVTUJD&WFOU%FUFDUJPO "&%ʣ • ԻڹΠϕϯτͷछྨɺൃੜ࣌ؒΛਪఆ͢ΔλεΫ .VMUJMBCFMDMBTTJGJDBUJPO • %$"4&8PSLTIPQ$IBMMFOHF͕ϕʔεϥΠϯ΍σʔληοτΛެ։ • %$"4&UBTLͰ͸

    Ґ֫ಘ • $POWPMVUJPO"VHNFOUFE5SBOTGPSNFSGPS4FNJ4VQFSWJTFE4PVOE&WFOU%FUFDUJPO <.JZB[BLJ %$"4&> • ೥Ҏ߱ͷൃදจݙ • "DPVTUJD&WFOU%FUFDUJPOXJUI$MBTTJGJFS$IBJOT <,PNBUTV *OUFSTQFFDI> • $PNQBSJTPOPG-PX$PNQMFYJUZ4FMG"UUFOUJPO.FDIBOJTNTGPS"DPVTUJD&WFOU%FUFDUJPO <,PNBUTV "14*1"> • 4FMG4VQFSWJTFE-FBSOJOH.FUIPE6TJOH.VMUJQMF4BNQMJOH4USBUFHJFTGPS(FOFSBM1VSQPTF "VEJP3FQSFTFOUBUJPO <,VSPZBOBHJ *$"441 BDDFQUFE>
  5. 4FMG4VQFSWJTFE-FBSOJOH.FUIPE6TJOH.VMUJQMF4BNQMJOH4USBUFHJFTGPS(FOFSBM1VSQPTF "VEJP3FQSFTFOUBUJPO <,VSPZBOBHJBOE,PNBUTV *$"441 BDDFQUFE > • ࣗݾڭࢣ͋ΓֶशʹΑΔ൚༻తͳΦʔσΟΦදݱΛಘΔͨΊͷଛࣦؔ਺ʹؔ͢Δݚڀ • ࣗݾڭࢣ͋Γֶश

    ˠ ଛࣦؔ਺ఆ͕ٛॏཁ • ैདྷ͸୯Ұ؍఺͔Βͷଛࣦؔ਺Λར༻ FH ಉҰͷԻϑΝΠϧʢdඵͳͲʣ಺ͷԻ͸͍ͣΕ΋ྨࣅͱԾఆ • ԾఆΛຬͨ͞ͳ͍λεΫ΋ଘࡏ • ఏҊख๏ෳ਺ͷ؍఺͔Βଛࣦؔ਺Λઃܭ • ˠϚϧνλεΫͳࣗݾڭࢣ͋Γֶशʹج͖ͮɺΑΓ൚༻తͳදݱΛ֫ಘ
  6. 4%3r .FEJVN3BSFXJUI'BTU$PNQVUBUJPOT<4DIFJCMFS> Goal: Accelerate Evaluation of Source Separation Algorithm MIX

    SEPARATE … … … !" ̂ !$ !$ ̂ !" Faster Evaluation → More Experiments → Better Algorithms Reference Sources Estimated Sources Evaluation (SDR) We make this step faster!
  7. 4%3r .FEJVN3BSFXJUI'BTU$PNQVUBUJPOT<4DIFJCMFS>  Signal-to-Distortion Ratio (SDR): • Similar to SNR

    • Allow distortion by short filter ℎ (L=512) Filter ℎ is obtained by solving a linear system SDR = 10 log ℎ ⋆ , - ℎ ⋆ , − ̂ , - ,: reference ̂ ,: estimate min ℎ ⋆ , − ̂ , - Algorithm 1) Compute statistics 2) Solve for 3 3) Filter 4 4) Compute SDR Conventional 5(7 log 7) 5(9:) (Gaussian Elimination) 5(7 log 9) 5(7) Proposed 5(7 log 7) 5(9 log 9) (Conjugate Gradient Descent) - 5(9) (9 ≪ 7) 7: Number of samples 9: Filter length Significant savings because • 7 can be long! 30 sec. at 16 kHz is 480000 samples! • 9 is also large with 512 taps
  8. 4%3r .FEJVN3BSFXJUI'BTU$PNQVUBUJPOT<4DIFJCMFS>  We release open-source implementation in Python with

    numpy/torch backend pip install fast-bss-eval Benchmark vs open implementations • mir_eval • sigsep/bss_eval 8x 12x 15x
  9. Controllable TTS with emotion strength Add emotion strength as the

    one of input parameters on an acoustic model [ a- ri^ ga- to- o- ] ͋Γ͕ͱ͏ Acoustic model Text analyzer Vocoder Text &NPUJPO strength 0 1 Happiness Waveform
  10. Prediction of emotion strength Consider two ways to predict emotion

    strength from speech 8BWFGPSN Human annotators weak strong IBQQJOFTT weak strong 4BEOFTT Label emotion strength by listening Feature extractor Predict emotion strength with ranking algorithm J: Annotate automatically L: In some cases, decreasing expressiveness in TTS J: More expressive in TTS L: High cost
  11. Acoustic model training Train acoustic model conditioning predicted emotion strength

    and emotion label. Acoustic model and vocoder are trained independently. [ a- ri^ ga- to- o- ] ありがとう Text analyzer Acoustic model Vocoder Text Speech Predicting Emotion strength 0 1 Emotion strength Happiness Emotion strength and emotion label Speech
  12. ࠂ஌̍࠾༻৘ใ ˙۩ମతͳۀ຿಺༰ ɾԻ੠ॲཧٕज़ʹؔ͢Δݚڀ։ൃ ɾ&OEUP&OEܕԻ੠ೝࣝϞσϧɺσίʔμɺٴͼपลٕज़ ɾ%//)..ܕԻ੠ೝࣝϞσϧʢԻڹϞσϧɺݴޠϞσϧʣɺσίʔμɺٴͼपลٕज़ ɾ&OEUP&OEԻ੠߹੒ʹ޲͚ͨԻڹϞσϧɾOFVSBMWPDPEFS ɾԻڹΠϕϯτݕग़ɺϚϧνϞʔμϧॲཧͳͲ৽نϓϩμΫτʹܨ͕Δٕज़ ɾ࣍ͷϓϩμΫτͷछͱͳΔٕज़ͷߟҊɺٴͼϓϩτλΠϓγεςϜͷ։ൃ ɾαʔόӡ༻ɺσϓϩΠɺӡ༻؀ڥߏஙͱվળʢ.-0QTʣ ˙ϙδγϣϯͷັྗ

    ɾ&OEUP&OEԻ੠ೝࣝ΍දݱྗʹண໨ͨ͠Ի੠߹੒ΛؚΉ࠷ઌ୺ͷٕज़ͷϓϩμΫτԽʹܞΘΔ͜ͱ͕Ͱ͖·͢ ɾ-*/&ΞϓϦ΍εϚʔτεϐʔΧʔ౳ͷطଘϓϩμΫτΛ௨ͯ͠େن໛ͳϢʔβʔͷੜ׆ʹӨڹΛ༩͑ΒΕΔͱ ಉ࣌ʹɺ-*/&"J$BMMͷΑ͏ʹͦΕ·Ͱੈʹͳ͔ͬͨ৽͍͠ϓϩμΫτͷ্ཱͪ͛ʹࢀը͢Δػձ͕͋Γ·͢ ɾ*$"441ɺ*/5&341&&$)ͱ͍ͬͨτοϓࠃࡍձٞʹͯൃදܦݧΛ࣋ͭଟ͘ͷΤϯδχΞɾϦαʔνϟʔͱ ڞʹݚڀ։ൃ͕Ͱ͖Δ؀ڥͰ͢ ˙։ൃ؀ڥ ɾ։ൃݴޠɿ1ZUIPO $$ 4IFMM4DSJQUͳͲ ɾ04ɿ-JOVY .BD049 ɾ෼ࢄॲཧɿ"QBDIF4QBSL )BEPPQ ɾίϯςφɿ%PDLFS ,VCFSOFUFT ɾ$*$%ɿ%SPOF "SHP +FOLJOT ɾ.-ϥΠϒϥϦɿ1Z5PSDI 5FOTPS'MPXͳͲ ɾͦͷଞɿ(JU)VC&OUFSQSJTF $POGMVFODF 4MBDL
  13. ࠂ஌̏ We Have a Presentation at NVIDIA GTC2022!! Title: Building

    Streaming End-to-end Speech Recognition Service with Triton Inference Server